为了账号安全,请及时绑定邮箱和手机立即绑定

从熊猫编写Excel文件,在使用熊猫样式创建的列中设置条形图格式

从熊猫编写Excel文件,在使用熊猫样式创建的列中设置条形图格式

BIG阳 2022-09-27 09:25:49
我有以下数据:s = '{"Date":{"0":"2016-10-03 00:00:00","1":"2016-10-03 00:00:00","2":"2016-10-03 00:00:00","3":"2016-10-04 00:00:00","4":"2016-10-04 00:00:00","5":"2016-10-04 00:00:00","6":"2016-10-05 00:00:00","7":"2016-10-05 00:00:00","8":"2016-10-05 00:00:00"},"Close":{"0":31.5,"1":112.52,"2":57.42,"3":113.0,"4":57.24,"5":31.35,"6":57.64,"7":31.59,"8":113.05},"Volume":{"0":14070500,"1":21701800,"2":19189500,"3":29736800,"4":20085900,"5":18460400,"6":16726400,"7":11808600,"8":21453100},"Symbol":{"0":"CSCO","1":"AAPL","2":"MSFT","3":"AAPL","4":"MSFT","5":"CSCO","6":"MSFT","7":"CSCO","8":"AAPL"}}'df = pd.read_json(s)看起来像这样:        Date  Close    Volume Symbol0 2016-10-03  31.50  14070500   CSCO1 2016-10-03 112.52  21701800   AAPL2 2016-10-03  57.42  19189500   MSFT3 2016-10-04 113.00  29736800   AAPL4 2016-10-04  57.24  20085900   MSFT5 2016-10-04  31.35  18460400   CSCO6 2016-10-05  57.64  16726400   MSFT7 2016-10-05  31.59  11808600   CSCO8 2016-10-05 113.05  21453100   AAPL我可以创建以下所需的样式:format_dict = dict(Date="{:%m/%d/%y}", Close="${:.2f}", Volume="{:,}")(    df.style.format(format_dict)    .hide_index()    .bar("Volume", color="lightblue", align="zero"))其外观如下:但是当我使用以下内容写入Excel文件时:format_dict = dict(Date="{:%m/%d/%y}", Close="${:.2f}", Volume="{:,}")df_formatted = (    df.style.format(format_dict)    .hide_index()    .bar("Volume", color="lightblue", align="zero"))df_formatted.to_excel("demo.xlsx")它给了我以下几点:我不知道如何解决这个问题。以下是我为创建此示例的虚拟env安装的软件包:-> % pip freezeet-xmlfile==1.0.1jdcal==1.4.1Jinja2==2.11.1MarkupSafe==1.1.1numpy==1.18.2openpyxl==3.0.3pandas==1.0.3python-dateutil==2.8.1pytz==2019.3six==1.14.0
查看完整描述

2 回答

?
qq_笑_17

TA贡献1818条经验 获得超7个赞

在 Excel 中,单元格内条形图称为数据条,您可以使用条件格式添加它。我已经演示了如何使用开放pyxlxlsx写器来做到这一点。我建议使用,因为它允许您选择渐变或纯色背景,而没有此选项并生成具有渐变的数据条。xlsxwriteropenpyxl

断续器

import pandas as pd

from xlsxwriter.utility import xl_range


s = '{"Date":{"0":"2016-10-03 00:00:00","1":"2016-10-03 00:00:00","2":"2016-10-03 00:00:00","3":"2016-10-04 00:00:00","4":"2016-10-04 00:00:00","5":"2016-10-04 00:00:00","6":"2016-10-05 00:00:00","7":"2016-10-05 00:00:00","8":"2016-10-05 00:00:00"},"Close":{"0":31.5,"1":112.52,"2":57.42,"3":113.0,"4":57.24,"5":31.35,"6":57.64,"7":31.59,"8":113.05},"Volume":{"0":14070500,"1":21701800,"2":19189500,"3":29736800,"4":20085900,"5":18460400,"6":16726400,"7":11808600,"8":21453100},"Symbol":{"0":"CSCO","1":"AAPL","2":"MSFT","3":"AAPL","4":"MSFT","5":"CSCO","6":"MSFT","7":"CSCO","8":"AAPL"}}'

df = pd.read_json(s)


def get_range(df, column_name):

    """Return coordinates for a column range given a column name.


    For example, if "Volume" is the third column and has 10 items,

    output is "C2:C10".

    """

    col = df.columns.get_loc(column_name)

    rows = df.shape[0]

    # Use 1 to skip the header.

    return xl_range(1, col, rows, col)


writer = pd.ExcelWriter("output.xlsx", engine="xlsxwriter")

df.to_excel(writer, sheet_name="Sheet1", index=False)

worksheet = writer.sheets["Sheet1"]

range_ = get_range(df, "Volume")

worksheet.conditional_format(range_, {'type': 'data_bar', 'bar_solid': True})

writer.save()

示例输出:

//img1.sycdn.imooc.com//633251810001278903180194.jpg

开放像素 (不支持实心数据条)

from openpyxl.formatting.rule import DataBar, FormatObject, Rule

import pandas as pd


s = '{"Date":{"0":"2016-10-03 00:00:00","1":"2016-10-03 00:00:00","2":"2016-10-03 00:00:00","3":"2016-10-04 00:00:00","4":"2016-10-04 00:00:00","5":"2016-10-04 00:00:00","6":"2016-10-05 00:00:00","7":"2016-10-05 00:00:00","8":"2016-10-05 00:00:00"},"Close":{"0":31.5,"1":112.52,"2":57.42,"3":113.0,"4":57.24,"5":31.35,"6":57.64,"7":31.59,"8":113.05},"Volume":{"0":14070500,"1":21701800,"2":19189500,"3":29736800,"4":20085900,"5":18460400,"6":16726400,"7":11808600,"8":21453100},"Symbol":{"0":"CSCO","1":"AAPL","2":"MSFT","3":"AAPL","4":"MSFT","5":"CSCO","6":"MSFT","7":"CSCO","8":"AAPL"}}'

df = pd.read_json(s)


first = FormatObject(type='min')

second = FormatObject(type='max')

data_bar = DataBar(cfvo=[first, second], color="ADD8E6", showValue=None, minLength=None, maxLength=None)

rule = Rule(type='dataBar', dataBar=data_bar)


writer = pd.ExcelWriter("output.xlsx", engine="openpyxl")

df.to_excel(writer, sheet_name="Sheet1", index=False)

worksheet = writer.sheets['Sheet1']


# Add data bar to Volume column.

start = worksheet["C"][1].coordinate

end = worksheet["C"][-1].coordinate

worksheet.conditional_formatting.add(f"{start}:{end}", rule)


writer.save()

writer.close()

示例输出:

//img1.sycdn.imooc.com//6332518e00016c3b03190205.jpg

REPT功能

另一种选择是创建单元格内条形图是使用Excel中的函数。它不像数据栏:)REPT


import pandas as pd

s = '{"Date":{"0":"2016-10-03 00:00:00","1":"2016-10-03 00:00:00","2":"2016-10-03 00:00:00","3":"2016-10-04 00:00:00","4":"2016-10-04 00:00:00","5":"2016-10-04 00:00:00","6":"2016-10-05 00:00:00","7":"2016-10-05 00:00:00","8":"2016-10-05 00:00:00"},"Close":{"0":31.5,"1":112.52,"2":57.42,"3":113.0,"4":57.24,"5":31.35,"6":57.64,"7":31.59,"8":113.05},"Volume":{"0":14070500,"1":21701800,"2":19189500,"3":29736800,"4":20085900,"5":18460400,"6":16726400,"7":11808600,"8":21453100},"Symbol":{"0":"CSCO","1":"AAPL","2":"MSFT","3":"AAPL","4":"MSFT","5":"CSCO","6":"MSFT","7":"CSCO","8":"AAPL"}}'

df = pd.read_json(s)


writer = pd.ExcelWriter("output.xlsx", engine="openpyxl")

df.to_excel(writer, sheet_name="Sheet1", index=False)

worksheet = writer.sheets['Sheet1']


# Use column E because that is the next empty column.

for row, cell in enumerate(worksheet["E"]):

    # Add 1 because Python's indexing starts at 0 and Excel's does not.

    row += 1

    if row != 1:

        # Column C corresponds to Volume.

        value = f'=REPT("|", C{row} / 1000000)'

    else:

        value = "Bar"

    worksheet[f"E{row}"] = value


writer.save()

writer.close()

示例输出:

//img1.sycdn.imooc.com//6332519b000101fc03180121.jpg

查看完整回答
反对 回复 2022-09-27
?
慕运维8079593

TA贡献1876条经验 获得超5个赞

你只是做这是为了显示目的,我们应该分配列format


df.Volume= df.Volume.map(lambda x: "{:,}".format(x))

df#df.to_excel("demo.xlsx")


         Date   Close      Volume Symbol

0  2016-10-03   31.50  14,070,500   CSCO

1  2016-10-03  112.52  21,701,800   AAPL

2  2016-10-03   57.42  19,189,500   MSFT

3  2016-10-04  113.00  29,736,800   AAPL

4  2016-10-04   57.24  20,085,900   MSFT

5  2016-10-04   31.35  18,460,400   CSCO

6  2016-10-05   57.64  16,726,400   MSFT

7  2016-10-05   31.59  11,808,600   CSCO

8  2016-10-05  113.05  21,453,100   AAPL


查看完整回答
反对 回复 2022-09-27
  • 2 回答
  • 0 关注
  • 98 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信