1 回答
TA贡献1807条经验 获得超9个赞
这是一个可能的解决方案。当然,您必须调整一些参数...
我的示例代码的作用:
应用并反转()图像以获得具有黑色背景和白色字母的二进制图像
threshold
bitwise_not
应用一个小来合并一些小元素并减少检测次数
dilate
用于...查找等值线:)
findContours
计算和对于每个轮廓,返回检测到写入的矩形(区域可用于过滤不需要的小元素)
boundingRect
area
准备一个与轮廓和矩形重叠源图像的图像(这部分只是为了调试所必需的)
检测后,代码继续创建所需的新“纹理图像”:
total_width
是所有矩形宽度的总和mean_height
是所有正交高度的平均值total_lines
是新图像中的行数;计算自 和 ,因此生成的图像近似为正方形total_width
mean_height
在循环中,我们将每个矩形从图像复制到
src
newImg
curr_line
并跟踪粘贴矩形的位置curr_width
src
我曾经将每个新矩形混合到 ;这类似于photoshop中的“变暗”混合模式
cv.min()
newImg
显示检测结果的图像:
生成的纹理图像:
一个代码...
import cv2 as cv
import numpy as np
import math
src = cv.imread("handwriting.jpg")
src_gray = cv.cvtColor(src,cv.COLOR_BGR2GRAY)
# apply threshold
threshold = 230
_, img_thresh = cv.threshold(src_gray, threshold, 255, 0)
img_thresh = cv.bitwise_not(img_thresh)
# apply dilate
dilatation_size = 1
dilatation_type = cv.MORPH_ELLIPSE
element = cv.getStructuringElement(dilatation_type, (2*dilatation_size + 1, 2*dilatation_size+1), (dilatation_size, dilatation_size))
img_dilate = cv.dilate(img_thresh, element)
# find contours
contours = cv.findContours(img_dilate, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# calculate rectangles and areas
boundRect = [None]*len(contours[1])
areas = [None]*len(contours[1])
for i, c in enumerate(contours[1]):
boundRect[i] = cv.boundingRect(c)
areas[i] = cv.contourArea(c)
# set drawing
drawing = np.zeros((src.shape[0], src.shape[1], 3), dtype=np.uint8)
# you can use only contours bigger than some area
for i in range(len(contours[1])):
if areas[i] > 1:
color = (50,50,0)
cv.rectangle(drawing, (int(boundRect[i][0]), int(boundRect[i][1])), \
(int(boundRect[i][0]+boundRect[i][2]), int(boundRect[i][1]+boundRect[i][3])), color, 2)
# set newImg
newImg = np.ones((src.shape[0], src.shape[1], 3), dtype=np.uint8)*255
total_width = 0
mean_height = 0.0
n = len(boundRect)
for r in (boundRect):
total_width += r[2]
mean_height += r[3]/n
total_lines = math.ceil(math.sqrt(total_width/mean_height))
max_line_width = math.floor(total_width/total_lines)
# loop through rectangles and perform a kind of copy paste
curr_line = 0
curr_width = 0
for r in (boundRect):
if curr_width > max_line_width:
curr_line += 1
curr_width = 0
# this is the position in newImg, where to insert source rectangle
pos = [curr_width, \
curr_width + r[2], \
math.floor(curr_line*mean_height), \
math.floor(curr_line*mean_height) + r[3] ]
s = src[r[1]:r[1]+r[3], r[0]:r[0]+r[2], :]
d = newImg[pos[2]:pos[3], pos[0]:pos[1], :]
newImg[pos[2]:pos[3], pos[0]:pos[1], :] = cv.min(d,s)
curr_width += r[2]
cv.imwrite('detection.png',cv.subtract(src,drawing))
cv.imshow('blend',cv.subtract(src,drawing))
crop = int(max_line_width*1.1)
cv.imwrite('texture.png',newImg[:crop, :crop, :])
cv.imshow('newImg',newImg[:crop, :crop, :])
cv.waitKey()
添加回答
举报