2 回答

TA贡献1796条经验 获得超10个赞
In [239]: SI=SimpleImputer(verbose=1)
In [240]: SI.fit_transform(X)
/usr/local/lib/python3.6/dist-packages/sklearn/impute/_base.py:403: UserWarning: Deleting features without observed values: [5]
"observed values: %s" % missing)
Out[240]:
array([[ 2., 3., 6., 5., 4.],
[ 2., 3., 6., 15., 4.]])
调整 X:
In [241]: X = np.array([[2,3,6,5,4, np.nan],[2,3,6,15,np.nan, 4]])
In [242]: SI.fit_transform(X)
Out[242]:
array([[ 2., 3., 6., 5., 4., 4.],
[ 2., 3., 6., 15., 4., 4.]])

TA贡献1804条经验 获得超3个赞
最后一列中的所有值都在数据中。因此,imputer 会删除该列,因为它不知道需要插补的值。请确保您的数据中至少有一个非值,以便允许 imputer 工作。NanNan
X = np.array([[2,3,6,5,4, np.nan],
[2,3,6,15,4, np.nan],
[1,2,6,2,4, 1] ])
SI = SimpleImputer(strategy='mean')
SI.fit_transform(X)
# Output:
[[ 2. 3. 6. 5. 4. 1.]
[ 2. 3. 6. 15. 4. 1.]
[ 1. 2. 6. 2. 4. 1.]]
添加回答
举报