3 回答
TA贡献1853条经验 获得超9个赞
您应该在不应用日志的情况下从 cartToPolar() 中提取幅度和相位图像。然后单独进行日志仅查看频谱,保持原始形式的幅度。然后在进行逆 dft 之前根据需要修改原始幅度。
其他问题之一是往返图像需要重新调整为 8 位范围和数据类型。我用 cv2.normalize() 来做到这一点。您可以从打印的最小值和最大值中看到这种需求。
以下是如何在 Python/OpenCV 中进行 dft、获取光谱然后进行逆 dft。我从彩色图像开始,但在读取它时将其转换为灰度。最终返回的往返 dft/idft 仍将是灰度。
输入:
https://i.stack.imgur.com/QP2Nd.png
import numpy as np
import cv2
# read input as grayscale
img = cv2.imread('lena.png', 0)
# convert image to floats and do dft saving as complex output
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
# apply shift of origin from upper left corner to center of image
dft_shift = np.fft.fftshift(dft)
# extract magnitude and phase images
mag, phase = cv2.cartToPolar(dft_shift[:,:,0], dft_shift[:,:,1])
# get spectrum for viewing only
spec = np.log(mag) / 30
# convert magnitude and phase into cartesian real and imaginary components
real, imag = cv2.polarToCart(mag, phase)
# combine cartesian components into one complex image
back = cv2.merge([real, imag])
# shift origin from center to upper left corner
back_ishift = np.fft.ifftshift(back)
# do idft saving as complex output
img_back = cv2.idft(back_ishift)
# combine complex components into original image again
img_back = cv2.magnitude(img_back[:,:,0], img_back[:,:,1])
# re-normalize to 8-bits
min, max = np.amin(img_back, (0,1)), np.amax(img_back, (0,1))
print(min,max)
img_back = cv2.normalize(img_back, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
cv2.imshow("ORIGINAL", img)
cv2.imshow("MAG", mag)
cv2.imshow("PHASE", phase)
cv2.imshow("SPECTRUM", spec)
cv2.imshow("REAL", real)
cv2.imshow("IMAGINARY", imag)
cv2.imshow("ORIGINAL DFT/IFT ROUND TRIP", img_back)
cv2.waitKey(0)
cv2.destroyAllWindows()
# write result to disk
cv2.imwrite("lena_dft_ift_opencv.png", img_back)
结果:
https://i.stack.imgur.com/qiv4k.png
TA贡献1863条经验 获得超2个赞
以下是如何使用 Python/OpenCV 在傅里叶域中使用陷波滤波从图像中去除重复的图案噪声
阅读图片
做 DFT
从实部和虚部生成幅度和相位分量
从幅度创建频谱
对光谱图像进行阈值化,以在阈值化图像的中心用黑色覆盖 DC 区域
将蒙版应用于幅度
结合新的幅度和原始相位
将它们转换为实部和虚部
做 IDFT
保存结果
带有重复图案噪声的输入:
https://i.stack.imgur.com/eE9xK.jpg
import numpy as np
import cv2
# read input as grayscale
img = cv2.imread('clown.jpg', 0)
# get min and max values of img
img_min, img_max = np.amin(img, (0,1)), np.amax(img, (0,1))
print(img_min,img_max)
# convert image to floats and do dft saving as complex output
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
# apply shift of origin from upper left corner to center of image
dft_shift = np.fft.fftshift(dft)
# extract magnitude and phase images
mag, phase = cv2.cartToPolar(dft_shift[:,:,0], dft_shift[:,:,1])
# get spectrum
spec = np.log(mag) / 20
# create mask from spectrum keeping only the brightest spots as the notches
mask = cv2.normalize(spec, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX)
mask = cv2.threshold(mask, 0.65, 1, cv2.THRESH_BINARY)[1]
# dilate mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, kernel)
# cover center DC component by circle of black leaving only a few white spots on black background
xcenter = mask.shape[1] // 2
ycenter = mask.shape[0] // 2
mask = cv2.circle(mask, (xcenter,ycenter), radius=10, color=0, thickness=cv2.FILLED)
# apply mask to magnitude such that magnitude is made zero where mask is one, ie at spots
mag[mask!=0] = 0
# convert new magnitude and old phase into cartesian real and imaginary components
real, imag = cv2.polarToCart(mag, phase)
# combine cartesian components into one complex image
back = cv2.merge([real, imag])
# shift origin from center to upper left corner
back_ishift = np.fft.ifftshift(back)
# do idft saving as complex output
img_back = cv2.idft(back_ishift)
# combine complex components into original image again
img_back = cv2.magnitude(img_back[:,:,0], img_back[:,:,1])
# re-normalize to 8-bits in range of original
min, max = np.amin(img_back, (0,1)), np.amax(img_back, (0,1))
print(min,max)
notched = cv2.normalize(img_back, None, alpha=img_min, beta=img_max, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
cv2.imshow("ORIGINAL", img)
cv2.imshow("MAG", mag)
cv2.imshow("PHASE", phase)
cv2.imshow("SPECTRUM", spec)
cv2.imshow("MASK", mask)
cv2.imshow("NOTCHED", notched)
cv2.waitKey(0)
cv2.destroyAllWindows()
# write result to disk
cv2.imwrite("clown_mask.png", (255*mask).clip(0,255).astype(np.uint8))
cv2.imwrite("clown_notched.png", notched)
光谱:
https://i.stack.imgur.com/FbBfD.png
面具:
https://i.stack.imgur.com/3Mfcn.png
陷波过滤结果(去除噪声):
https://i.stack.imgur.com/HdajF.png
动画(使用 Imagemagick 单独创建):
https://i.stack.imgur.com/DpLWM.gif
TA贡献1831条经验 获得超9个赞
如果您需要通过将幅度提高到接近 1 的幂(称为系数求根或 alpha 求根)来修改幅度,那么这只是使用 Python/OpenCV 对我上面的代码进行的简单修改。在将幅度和相位转换回实部和虚部之前,只需添加 cv2.pow(mag, 1.1)。
输入:
import numpy as np
import cv2
# read input as grayscale
img = cv2.imread('lena.png', 0)
# convert image to floats and do dft saving as complex output
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
# apply shift of origin from upper left corner to center of image
dft_shift = np.fft.fftshift(dft)
# extract magnitude and phase images
mag, phase = cv2.cartToPolar(dft_shift[:,:,0], dft_shift[:,:,1])
# get spectrum for viewing only
spec = np.log(mag) / 30
# NEW CODE HERE: raise mag to some power near 1
# values larger than 1 increase contrast; values smaller than 1 decrease contrast
mag = cv2.pow(mag, 1.1)
# convert magnitude and phase into cartesian real and imaginary components
real, imag = cv2.polarToCart(mag, phase)
# combine cartesian components into one complex image
back = cv2.merge([real, imag])
# shift origin from center to upper left corner
back_ishift = np.fft.ifftshift(back)
# do idft saving as complex output
img_back = cv2.idft(back_ishift)
# combine complex components into original image again
img_back = cv2.magnitude(img_back[:,:,0], img_back[:,:,1])
# re-normalize to 8-bits
min, max = np.amin(img_back, (0,1)), np.amax(img_back, (0,1))
print(min,max)
img_back = cv2.normalize(img_back, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
cv2.imshow("ORIGINAL", img)
cv2.imshow("MAG", mag)
cv2.imshow("PHASE", phase)
cv2.imshow("SPECTRUM", spec)
cv2.imshow("REAL", real)
cv2.imshow("IMAGINARY", imag)
cv2.imshow("COEF ROOT", img_back)
cv2.waitKey(0)
cv2.destroyAllWindows()
# write result to disk
cv2.imwrite("lena_grayscale_opencv.png", img)
cv2.imwrite("lena_grayscale_coefroot_opencv.png", img_back)
原始灰度
https://i.stack.imgur.com/DaJ6S.png
系数生根结果:
https://i.stack.imgur.com/l8S55.png
这是显示差异的动画(使用 ImageMagick 创建):
https://i.stack.imgur.com/KSCFD.gif
添加回答
举报