1 回答

TA贡献1799条经验 获得超6个赞
由于此时您只能拥有少量行,因此您只需按原样收集属性并将结果展平(Spark >= 2.4)
import org.apache.spark.sql.functions.{collect_set, flatten, array_distinct}
val byState = Seq(
("Canada", "America", Seq("A", "B")),
("Belgium", "Europe", Seq("Z")),
("USA", "America", Seq("A")),
("France", "Europe", Seq("Y", "X"))
).toDF("country", "continent", "attributes")
byState
.groupBy("continent")
.agg(array_distinct(flatten(collect_set($"attributes"))) as "attributes")
.show
+---------+----------+
|continent|attributes|
+---------+----------+
| Europe| [Y, X, Z]|
| America| [A, B]|
+---------+----------+
在一般情况下,事情更难处理,并且在许多情况下,如果您期望大型列表,每个组有许多重复项和许多值,则最佳解决方案*是从头开始重新计算结果,即
input.groupBy($"continent").agg(collect_set($"attributes") as "attributes")
一种可能的替代方法是使用Aggregator
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.{Encoder, Encoders}
import scala.collection.mutable.{Set => MSet}
class MergeSets[T, U](f: T => Seq[U])(implicit enc: Encoder[Seq[U]]) extends
Aggregator[T, MSet[U], Seq[U]] with Serializable {
def zero = MSet.empty[U]
def reduce(acc: MSet[U], x: T) = {
for { v <- f(x) } acc.add(v)
acc
}
def merge(acc1: MSet[U], acc2: MSet[U]) = {
acc1 ++= acc2
}
def finish(acc: MSet[U]) = acc.toSeq
def bufferEncoder: Encoder[MSet[U]] = Encoders.kryo[MSet[U]]
def outputEncoder: Encoder[Seq[U]] = enc
}
并按如下方式应用
case class CountryAggregate(
country: String, continent: String, attributes: Seq[String])
byState
.as[CountryAggregate]
.groupByKey(_.continent)
.agg(new MergeSets[CountryAggregate, String](_.attributes).toColumn)
.toDF("continent", "attributes")
.show
+---------+----------+
|continent|attributes|
+---------+----------+
| Europe| [X, Y, Z]|
| America| [B, A]|
+---------+----------+
但这显然不是 Java 友好的选择。
另请参阅如何在 groupBy 之后将值聚合到集合中?(类似,但没有唯一性约束)。
* 这是因为explode可能非常昂贵,尤其是在旧 Spark 版本中,与访问 SQL 集合的外部表示相同。
添加回答
举报