2 回答
TA贡献1842条经验 获得超12个赞
这个问题迟到了,但如果它对遇到它的任何人有用 -
当您的权重是整数时,您可以使用 reindex 按计数扩展,然后直接使用 boxplot 调用。我已经能够在几千个变成几十万的数据帧上做到这一点而没有内存挑战,特别是如果实际重新索引的数据帧被包装到第二个函数中,该函数没有在内存中分配它。
import pandas as pd
import seaborn as sns
data = {
"Name": ['Sara', 'John', 'Mark', 'Peter', 'Kate'],
"Count": [20, 10, 5, 2, 5],
"Score": [2, 4, 7, 8, 7]
}
df = pd.DataFrame(data)
def reindex_df(df, weight_col):
"""expand the dataframe to prepare for resampling
result is 1 row per count per sample"""
df = df.reindex(df.index.repeat(df[weight_col]))
df.reset_index(drop=True, inplace=True)
return(df)
df = reindex_df(df, weight_col = 'Count')
sns.boxplot(x='Name', y='Score', data=df)
或者如果您担心内存
def weighted_boxplot(df, weight_col):
sns.boxplot(x='Name',
y='Score',
data=reindex_df(df, weight_col = weight_col))
weighted_boxplot(df, 'Count')
TA贡献1893条经验 获得超10个赞
这里有两种方法来回答这个问题。您可能会期待第一个,但它不是一个好的计算解决方案confidence intervals of the median,它具有使用示例数据的以下代码,引用matplotlib/cbook/__init__.py。因此,Second 比其他任何代码都好得多,因为它经过了很好的测试,可以比较任何其他自定义代码。
def boxplot_stats(X, whis=1.5, bootstrap=None, labels=None,
autorange=False):
def _bootstrap_median(data, N=5000):
# determine 95% confidence intervals of the median
M = len(data)
percentiles = [2.5, 97.5]
bs_index = np.random.randint(M, size=(N, M))
bsData = data[bs_index]
estimate = np.median(bsData, axis=1, overwrite_input=True)
第一的:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
data = {
"Name": ['Sara', 'John', 'Mark', 'Peter', 'Kate'],
"Count": [20, 10, 5, 2, 5],
"Score": [2, 4, 7, 8, 7]
}
df = pd.DataFrame(data)
print(df)
def boxplot(values, freqs):
values = np.array(values)
freqs = np.array(freqs)
arg_sorted = np.argsort(values)
values = values[arg_sorted]
freqs = freqs[arg_sorted]
count = freqs.sum()
fx = values * freqs
mean = fx.sum() / count
variance = ((freqs * values ** 2).sum() / count) - mean ** 2
variance = count / (count - 1) * variance # dof correction for sample variance
std = np.sqrt(variance)
minimum = np.min(values)
maximum = np.max(values)
cumcount = np.cumsum(freqs)
print([std, variance])
Q1 = values[np.searchsorted(cumcount, 0.25 * count)]
Q2 = values[np.searchsorted(cumcount, 0.50 * count)]
Q3 = values[np.searchsorted(cumcount, 0.75 * count)]
'''
interquartile range (IQR), also called the midspread or middle 50%, or technically
H-spread, is a measure of statistical dispersion, being equal to the difference
between 75th and 25th percentiles, or between upper and lower quartiles,[1][2]
IQR = Q3 − Q1. In other words, the IQR is the first quartile subtracted from
the third quartile; these quartiles can be clearly seen on a box plot on the data.
It is a trimmed estimator, defined as the 25% trimmed range, and is a commonly used
robust measure of scale.
'''
IQR = Q3 - Q1
'''
The whiskers add 1.5 times the IQR to the 75 percentile (aka Q3) and subtract
1.5 times the IQR from the 25 percentile (aka Q1). The whiskers should include
99.3% of the data if from a normal distribution. So the 6 foot tall man from
the example would be inside the whisker but my 6 foot 2 inch girlfriend would
be at the top whisker or pass it.
'''
whishi = Q3 + 1.5 * IQR
whislo = Q1 - 1.5 * IQR
stats = [{
'label': 'Scores', # tick label for the boxplot
'mean': mean, # arithmetic mean value
'iqr': Q3 - Q1, # 5.0,
# 'cilo': 2.0, # lower notch around the median
# 'cihi': 4.0, # upper notch around the median
'whishi': maximum, # end of the upper whisker
'whislo': minimum, # end of the lower whisker
'fliers': [], # '\array([], dtype=int64)', # outliers
'q1': Q1, # first quartile (25th percentile)
'med': Q2, # 50th percentile
'q3': Q3 # third quartile (75th percentile)
}]
fs = 10 # fontsize
_, axes = plt.subplots(nrows=1, ncols=1, figsize=(6, 6), sharey=True)
axes.bxp(stats)
axes.set_title('Default', fontsize=fs)
plt.show()
boxplot(df['Score'], df['Count'])
第二:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = {
"Name": ['Sara', 'John', 'Mark', 'Peter', 'Kate'],
"Count": [20, 10, 5, 2, 5],
"Score": [2, 4, 7, 8, 7]
}
df = pd.DataFrame(data)
print(df)
labels = ['Scores']
data = df['Score'].repeat(df['Count']).tolist()
# compute the boxplot stats
stats = cbook.boxplot_stats(data, labels=labels, bootstrap=10000)
print(['stats :', stats])
fs = 10 # fontsize
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(6, 6), sharey=True)
axes.bxp(stats)
axes.set_title('Boxplot', fontsize=fs)
plt.show()
添加回答
举报