加载模型后我无法访问图层。我创建的模型如下:def create_model(vocab_dim, hidden_dim): input_seq_axis1 = Axis('inputAxis1') input_sequence_before = sequence.input_variable(shape=vocab_dim, sequence_axis=input_seq_axis1, is_sparse = use_sparse) input_sequence_after = sequence.input_variable(shape=vocab_dim, sequence_axis=input_seq_axis1, is_sparse = use_sparse) e=Sequential([ C.layers.Embedding(hidden_dim), Stabilizer() ],name='Embedding') a = Sequential([ e, C.layers.Recurrence(C.layers.LSTM(hidden_dim//2),name='ForwardRecurrence'), ],name='ForwardLayer') b = Sequential([ e, C.layers.Recurrence(C.layers.LSTM(hidden_dim//2),go_backwards=True), ],name='BackwardLayer') latent_vector = C.splice(a(input_sequence_before), b(input_sequence_after)) bias = C.layers.Parameter(shape = (vocab_dim, 1), init = 0, name='Bias') weights = C.layers.Parameter(shape = (vocab_dim, hidden_dim), init = C.initializer.glorot_uniform(), name='Weights') z = C.times_transpose(weights, latent_vector,name='Transpose') + bias z = C.reshape(z, shape = (vocab_dim)) return z然后我加载模型:def load_my_model(vocab_dim, hidden_dim): z=load_model("models/lm_epoch0.dnn") input_sequence_before = z.arguments[0] input_sequence_after = z.arguments[1] a=z.ForwardLayer b=z.BackwardLayer latent_vector = C.splice(a(input_sequence_before), b(input_sequence_after))我收到一个错误:TypeError("argument ForwardRecurrence 的类型 SequenceOver[inputAxis1][Tensor[100]] 与传递的变量的类型 SequenceOver[inputAxis1][SparseTensor[50000]] 不兼容",)看起来名称引用的层 (z.ForwardLayer) 表示来自层立即输入的函数。如何计算“latent_vector”(我需要这个变量来创建交叉熵和损失函数以继续训练)?
1 回答

HUWWW
TA贡献1874条经验 获得超12个赞
根据错误,与 ForwardLayer 的预期 (100) 相比,您的输入 seq 的尺寸太大 (5000)。
当您通过 选择节点 ForwardLayer 时z.ForwardLayer
,您只能选择那个非常特定的节点/层,而不是与其连接的计算图的层/节点/其余部分。
你应该这样做a = C.combine([z.ForwardLayer.owner])
,你应该没事。
添加回答
举报
0/150
提交
取消