2 回答

TA贡献1898条经验 获得超8个赞
3-为了提高性能,您可以在不使用的情况下按 CPU 内核划分任务lock sync.RWMutex:
+30x使用通道和 进行优化runtime.NumCPU(),这需要2ms2 核和993µs8 核,而您的示例代码需要61ms2 核和40ms8 核:
请参阅此工作示例代码和输出:
package main
import (
"fmt"
"math"
"runtime"
"time"
)
func main() {
nCPU := runtime.NumCPU()
fmt.Println("nCPU =", nCPU)
ch := make(chan float64, nCPU)
startTime := time.Now()
a := 0.0
b := 1.0
n := 100000.0
deltax := (b - a) / n
stepPerCPU := n / float64(nCPU)
for start := 0.0; start < n; {
stop := start + stepPerCPU
go f(start, stop, a, deltax, ch)
start = stop
}
integral := 0.0
for i := 0; i < nCPU; i++ {
integral += <-ch
}
fmt.Println(time.Now().Sub(startTime))
fmt.Println(deltax * integral)
}
func f(start, stop, a, deltax float64, ch chan float64) {
result := 0.0
for i := start; i < stop; i++ {
result += math.Sqrt(a + deltax*(i+0.5))
}
ch <- result
}
2核输出:
nCPU = 2
2.0001ms
0.6666666685900485
8核输出:
nCPU = 8
993µs
0.6666666685900456
您的示例代码,2 核输出:
0.6666666685900424
61.0035ms
您的示例代码,8 核输出:
0.6666666685900415
40.9964ms
2-为了获得良好的基准统计数据,请使用大量样本(大 n):
正如您在此处看到的,使用 2 个内核需要2 个内核,但在使用 1 个内核的同110ms一个 CPU 上,这需要: 215msn := 10000000.0
使用n := 10000000.0单个 goroutine,请参阅此工作示例代码:
package main
import (
"fmt"
"math"
"time"
)
func main() {
now := time.Now()
a := 0.0
b := 1.0
n := 10000000.0
deltax := (b - a) / n
result := 0.0
for i := 0.0; i < n; i++ {
result += math.Sqrt(a + deltax*(i+0.5))
}
fmt.Println(time.Now().Sub(now))
fmt.Println(deltax * result)
}
输出:
215.0123ms
0.6666666666685884
使用n := 10000000.0和 2 个 goroutine,请参阅此工作示例代码:
package main
import (
"fmt"
"math"
"runtime"
"time"
)
func main() {
nCPU := runtime.NumCPU()
fmt.Println("nCPU =", nCPU)
ch := make(chan float64, nCPU)
startTime := time.Now()
a := 0.0
b := 1.0
n := 10000000.0
deltax := (b - a) / n
stepPerCPU := n / float64(nCPU)
for start := 0.0; start < n; {
stop := start + stepPerCPU
go f(start, stop, a, deltax, ch)
start = stop
}
integral := 0.0
for i := 0; i < nCPU; i++ {
integral += <-ch
}
fmt.Println(time.Now().Sub(startTime))
fmt.Println(deltax * integral)
}
func f(start, stop, a, deltax float64, ch chan float64) {
result := 0.0
for i := start; i < stop; i++ {
result += math.Sqrt(a + deltax*(i+0.5))
}
ch <- result
}
输出:
nCPU = 2
110.0063ms
0.6666666666686073
1- Goroutines 的数量有一个最佳点,从这一点开始,增加 Goroutines 的数量并不会减少程序执行时间:
在 2 核 CPU 上,使用以下代码,结果是:
nCPU: 1, 2, 4, 8, 16
Time: 2.1601236s, 1.1220642s, 1.1060633s, 1.1140637s, 1.1380651s
正如你所看到的nCPU=1 ,nCPU=2减少量已经足够大,但在此之后它并不多,所以nCPU=22 Cores CPU 是此示例代码的最佳点,所以在这里使用 nCPU := runtime.NumCPU()就足够了。
package main
import (
"fmt"
"math"
"time"
)
func main() {
nCPU := 2 //2.1601236s@1 1.1220642s@2 1.1060633s@4 1.1140637s@8 1.1380651s@16
fmt.Println("nCPU =", nCPU)
ch := make(chan float64, nCPU)
startTime := time.Now()
a := 0.0
b := 1.0
n := 100000000.0
deltax := (b - a) / n
stepPerCPU := n / float64(nCPU)
for start := 0.0; start < n; {
stop := start + stepPerCPU
go f(start, stop, a, deltax, ch)
start = stop
}
integral := 0.0
for i := 0; i < nCPU; i++ {
integral += <-ch
}
fmt.Println(time.Now().Sub(startTime))
fmt.Println(deltax * integral)
}
func f(start, stop, a, deltax float64, ch chan float64) {
result := 0.0
for i := start; i < stop; i++ {
result += math.Sqrt(a + deltax*(i+0.5))
}
ch <- result
}

TA贡献1995条经验 获得超2个赞
除非 goroutine 中的活动花费的时间比切换上下文、执行任务和使用互斥锁更新值所需的时间多得多,否则串行执行会更快。
看一个稍微修改过的版本。我所做的只是在f()函数中添加 1 微秒的延迟。
package main
import (
"fmt"
"math"
"sync"
"time"
)
type Result struct {
result float64
lock sync.RWMutex
}
var wg sync.WaitGroup
var result Result
func main() {
fmt.Println("concurrent")
concurrent()
result.result = 0
fmt.Println("serial")
serial()
}
func concurrent() {
now := time.Now()
a := 0.0
b := 1.0
n := 100000.0
deltax := (b - a) / n
wg.Add(int(n))
for i := 0.0; i < n; i++ {
go f(a, deltax, i, true)
}
wg.Wait()
fmt.Println(deltax * result.result)
fmt.Println(time.Now().Sub(now))
}
func serial() {
now := time.Now()
a := 0.0
b := 1.0
n := 100000.0
deltax := (b - a) / n
for i := 0.0; i < n; i++ {
f(a, deltax, i, false)
}
fmt.Println(deltax * result.result)
fmt.Println(time.Now().Sub(now))
}
func f(a, deltax, i float64, concurrent bool) {
time.Sleep(1 * time.Microsecond)
fx := math.Sqrt(a + deltax*(i+0.5))
if concurrent {
result.lock.Lock()
result.result += fx
result.lock.Unlock()
wg.Done()
} else {
result.result += fx
}
}
加上延迟,结果如下(并发版本快很多):
concurrent
0.6666666685900424
624.914165ms
serial
0.6666666685900422
5.609195767s
事不宜迟:
concurrent
0.6666666685900428
50.771275ms
serial
0.6666666685900422
749.166µs
正如你所看到的,完成一项任务所花费的时间越长,如果可能的话,同时执行它就越有意义。
- 2 回答
- 0 关注
- 163 浏览
添加回答
举报