1 回答
TA贡献2011条经验 获得超2个赞
使用DataFrame.reindex有MultiIndex.from_product:
li = list('ABC')
mux = pd.MultiIndex.from_product([df['Date'].unique(), li], names=['Date', 'Student'])
df = df.set_index(['Date', 'Student']).reindex(mux, fill_value=0).reset_index()
print (df)
Date Student Score
0 15-03-19 A 10
1 15-03-19 B 0
2 15-03-19 C 0
3 16-03-19 A 12
4 16-03-19 B 10
5 16-03-19 C 11
6 17-03-19 A 9
7 17-03-19 B 0
8 17-03-19 C 0
替代方法是使用左连接DataFrame.merge和辅助 DataFrame 创建product,最后替换缺失值fillna:
from itertools import product
df1 = pd.DataFrame(list(product(df['Date'].unique(), li)), columns=['Date', 'Student'])
df = df1.merge(df, how='left').fillna(0)
print (df)
Date Student Score
0 15-03-19 A 10.0
1 15-03-19 B 0.0
2 15-03-19 C 0.0
3 16-03-19 A 12.0
4 16-03-19 B 10.0
5 16-03-19 C 11.0
6 17-03-19 A 9.0
7 17-03-19 B 0.0
8 17-03-19 C 0.0
添加回答
举报