为了账号安全,请及时绑定邮箱和手机立即绑定

将 JavaScript 异步和 igraph 代码移植到 R?

将 JavaScript 异步和 igraph 代码移植到 R?

慕森王 2021-12-02 19:35:27
我正在努力将一些 JavaScript 代码(包括异步和图形功能)移植到 R。请帮助!这是我尝试移植的内容:import jsonpFetch from "./jsonpFetch";import bus from '../bus';/** * This function builds a graph from google's auto-suggestions. */export default function buildGraph(entryWord, pattern, MAX_DEPTH, progress) {  entryWord = entryWord && entryWord.trim();  if (!entryWord) return;  entryWord = entryWord.toLocaleLowerCase();  const insertPosition = pattern.indexOf('...');  if (insertPosition < 0) {    throw new Error('Query pattern is missing "..."');  }  const queryPosition = pattern.indexOf('[query]');  if (queryPosition < 0) {    throw new Error('Query pattern is missing "[query]" keyword');  }  if (insertPosition < queryPosition) {    throw new Error('[query] should come before ...');  }  let cancelled = false;  let pendingResponse;  let graph = require('ngraph.graph')();  graph.maxDepth = MAX_DEPTH;  let queue = [];  let requestDelay = 300 + Math.random() * 100;  progress.startDownload();  startQueryConstruction();  return {    dispose,    graph  }  function dispose() {    cancelled = true;    if (pendingResponse) {      pendingResponse.cancel();      pendingResponse = null;    }  }  function startQueryConstruction() {    graph.addNode(entryWord, {depth: 0});    fetchNext(entryWord);  }  function loadSiblings(parent, results) {    let q = fullQuery(parent).toLocaleLowerCase();    var parentNode = graph.getNode(parent);    if (!parentNode) {      throw new Error('Parent is missing for ' + parent);    }   请注意,我已经包含了一些注释掉的 JavaScript 代码行,我不确定 R 的等价物是什么。对我来说,大部分晦涩的代码都集中在如何igraph在 R 中执行操作以及如何在 R 中异步执行操作(使用promises和/或futures)。归属:https : //github.com/anvaka/vs/blob/master/src/lib/buildGraph.js提前致谢!
查看完整描述

1 回答

?
30秒到达战场

TA贡献1828条经验 获得超6个赞

我最近一直在玩 igraph 和 API,所以这是相当新鲜的。我认为下面的代码可以满足您的需求,但它确实省略了一些复杂性(例如不会使 API 超时)。它不是非常快 - 我怀疑其中很多与使用 as_data_frame 接口来跟踪顶点有关。


所以我确信它可以被优化并且我确信在某个时候 API 会以一种破坏它的编码返回一些东西,但这是一个开始。


library(igraph)


api_fetch <- function(query){

    result <- jsonlite::fromJSON(paste0('http://suggestqueries.google.com/complete/search?client=firefox&q=', httpuv::encodeURIComponent(query)))

    return(result)

}



build_query_graph <- function(entry_word, max_depth=2){


    # Create an empty graph

    graph <- make_empty_graph()

    entry_word <- tolower(trimws(entry_word))

    graph <- add_vertices(graph, 1, name=entry_word, searched=FALSE)


    # Keep on doing this until the graph hits the maximum depth from the entry word

    while(TRUE){


        # Look up the current vertices and find their depths from the entry word

        vertices <- as_data_frame(graph, what='vertices')

        vertex_depth <- distances(graph, v=entry_word)

        vertices$depth <- vertex_depth[match(colnames(vertex_depth), vertices$name)]


        # Find vertices at least one step from the maximum depth and that haven't 

        # already been searched and sort to get the shallowest at the top

        live_vertices <- subset(vertices, depth <= (max_depth - 1) & ! searched)

        live_vertices <- live_vertices[order(live_vertices$depth),]


        # If there are any vertices meeting these criteria, then query the API

        # otherwise bail from the while loop

        if(nrow(live_vertices)){


            # Get the vertex name and query it

            this_vertex <- live_vertices$name[1]

            res <- api_fetch(this_vertex)


            # For each of the daughter results, check it isn't already a vertex

            # and add an edge from it to this_vertex

            for(daughter in res[[2]]){


                if(! daughter %in% get.vertex.attribute(graph, 'name')){

                    graph <- add_vertices(graph, 1, name=daughter, searched=FALSE)

                }


                graph <- add_edges(graph, c(this_vertex, daughter))

            }


            # Don't search this vertex again

            graph <- set_vertex_attr(graph, 'searched', this_vertex, TRUE)


        } else {

            break

        }       

    }

    return(graph)

}

运行:


> g <- build_query_graph('amazon')

> g

IGRAPH 0ec19b6 DN-- 90 100 -- 

+ attr: name (v/c), searched (v/l)

+ edges from 0ec19b6 (vertex names):

 [1] amazon            ->amazon                        amazon            ->amazon prime                  amazon            ->amazon prime video           

 [4] amazon            ->amazon uk                     amazon            ->amazon music                  amazon            ->amazon smile                 

 [7] amazon            ->amazon india                  amazon            ->amazon jobs                   amazon            ->amazon video                 

[10] amazon            ->amazon customer service       amazon prime      ->amazon prime                  amazon prime      ->amazon prime video           

[13] amazon prime      ->amazon prime movies           amazon prime      ->amazon prime music            amazon prime      ->amazon prime now             

[16] amazon prime      ->amazon prime login            amazon prime      ->amazon prime uk               amazon prime      ->amazon prime tv              

[19] amazon prime      ->amazon prime cost             amazon prime      ->amazon prime student          amazon prime video->amazon prime video           

[22] amazon prime video->amazon prime video login      amazon prime video->amazon prime video app        amazon prime video->amazon prime video uk        

+ ... omitted several edges

> plot(g)

//img1.sycdn.imooc.com//61a8afb40001541605020492.jpg

考虑一下,重复重新计算所有距离并进行大量排序和匹配。在创建单个顶点时保存它们的深度可能会更快:


build_query_graph <- function(entry_word, max_depth=2){


    # Create an empty graph

    graph <- make_empty_graph()

    entry_word <- tolower(trimws(entry_word))

    graph <- add_vertices(graph, 1, name=entry_word, depth=0, searched=FALSE)


    # Keep on doing this until the graph hits the maximum depth from the entry word

    while(TRUE){


        # Look up the current vertices and find their depths from the entry word

        vertices <- as_data_frame(graph, what='vertices')


        # Find vertices at least one step from the maximum depth and that haven't 

        # already been searched and sort to get the shallowest at the top

        live_vertices <- subset(vertices, depth <= (max_depth - 1) & ! searched)

        live_vertices <- live_vertices[order(live_vertices$depth),]


        # If there are any vertices meeting these criteria, then query the API

        # otherwise bail from the while loop

        if(nrow(live_vertices)){


            # Get the vertex name and query it

            this_vertex <- live_vertices$name[1]

            res <- api_fetch(this_vertex)


            # For each of the daughter results, check it isn't already a vertex

            # add an edge from it to this_vertex and store the depth from the entry word

            for(daughter in res[[2]]){


                if(! daughter %in% get.vertex.attribute(graph, 'name')){

                    graph <- add_vertices(graph, 1, name=daughter, depth=NA, searched=FALSE)

                }


                graph <- add_edges(graph, c(this_vertex, daughter))

                graph <- set_vertex_attr(graph, 'depth', daughter,

                                         distances(graph, v=entry_word, to=daughter))

            }


            # Don't search this vertex again

            graph <- set_vertex_attr(graph, 'searched', this_vertex, TRUE)


        } else {

            break

        }       

    }


    return(graph)

}



查看完整回答
反对 回复 2021-12-02
  • 1 回答
  • 0 关注
  • 188 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信