3 回答

TA贡献1799条经验 获得超8个赞
假设列表已排序,您可以使用 ... 恰当命名的groupby, 和 ,按第 4 和第 5 个元素对子列表进行分组itemgetter。enumerate在由 返回的迭代器上使用groupby:
from itertools import groupby
from operator import itemgetter
# data = [['name0', ...
[ [str(i+1)] + l for i, (k, g) in enumerate(groupby(data, key=itemgetter(4, 5))) for l in g ]
输出:
[
['1', 'name0', 24, 19, 25, 22.67, 19],
['2', 'name1', 25, 19, 25, 23.0, 19],
['2', 'name2', 25, 19, 25, 23.0, 19],
['3', 'name3', 24, 22, 23, 23.0, 22],
['4', 'name4', 27, 19, 25, 23.67, 19],
['4', 'name5', 27, 19, 25, 23.67, 19],
['5', 'name6', 28, 19, 26, 24.33, 19],
['5', 'name7', 28, 19, 26, 24.33, 19],
['5', 'name8', 28, 19, 26, 24.33, 19],
['6', 'name9', 26, 22, 27, 25.0, 22],
['7', 'name10', 27, 23, 25, 25.0, 23],
['8', 'name11', 30, 19, 27, 25.33, 19],
['9', 'name12', 24, 31, 28, 27.67, 24],
['10', 'name13', 28, 27, 28, 27.67, 27],
['10', 'name14', 27, 29, 27, 27.67, 27],
['11', 'name15', 29, 26, 29, 28.0, 26],
['12', 'name16', 29, 26, 30, 28.33, 26],
['13', 'name17', 30, 31, 26, 29.0, 26],
['14', 'name18', 33, 27, 30, 30.0, 27],
['15', 'name19', 29, 31, 30, 30.0, 29],
['16', 'name20', 30, 36, 31, 32.33, 30],
['17', 'name21', 36, 30, 32, 32.67, 30],
['18', 'name22', 38, 33, 36, 35.67, 33],
['19', 'name23', 30, 27, 99, 52.0, 27],
['20', 'name24', 99, 27, 32, 52.67, 27],
['21', 'name25', 37, 99, 36, 57.33, 36]
]

TA贡献1826条经验 获得超6个赞
使用Pandas和dense rank:
import pandas as pd
df = pd.DataFrame(data = [['name0', 24, 19, 25, 22.67, 19],
['name1', 25, 19, 25, 23.0, 19],
['name2', 25, 19, 25, 23.0, 19],
['name3', 24, 22, 23, 23.0, 22],
['name4', 27, 19, 25, 23.67, 19],
['name5', 27, 19, 25, 23.67, 19],
['name6', 28, 19, 26, 24.33, 19],
['name7', 28, 19, 26, 24.33, 19],
['name8', 28, 19, 26, 24.33, 19],
['name9', 26, 22, 27, 25.0, 22],
['name10', 27, 23, 25, 25.0, 23],
['name11', 30, 19, 27, 25.33, 19],
['name12', 24, 31, 28, 27.67, 24],
['name13', 28, 27, 28, 27.67, 27],
['name14', 27, 29, 27, 27.67, 27],
['name15', 29, 26, 29, 28.0, 26],
['name16', 29, 26, 30, 28.33, 26],
['name17', 30, 31, 26, 29.0, 26],
['name18', 33, 27, 30, 30.0, 27],
['name19', 29, 31, 30, 30.0, 29],
['name20', 30, 36, 31, 32.33, 30],
['name21', 36, 30, 32, 32.67, 30],
['name22', 38, 33, 36, 35.67, 33],
['name23', 30, 27, 99, 52.0, 27],
['name24', 99, 27, 32, 52.67, 27],
['name25', 37, 99, 36, 57.33, 36]], columns= ['1', '2', '3', '4', '5', '6'])
df["rank"] = df['5'].rank(method = "dense")
df
>
1 2 3 4 5 6 rank
0 name0 24 19 25 22.67 19 1.0
1 name1 25 19 25 23.00 19 2.0
2 name2 25 19 25 23.00 19 2.0
3 name3 24 22 23 23.00 22 2.0
4 name4 27 19 25 23.67 19 3.0
5 name5 27 19 25 23.67 19 3.0
6 name6 28 19 26 24.33 19 4.0
7 name7 28 19 26 24.33 19 4.0
8 name8 28 19 26 24.33 19 4.0
9 name9 26 22 27 25.00 22 5.0
10 name10 27 23 25 25.00 23 5.0
11 name11 30 19 27 25.33 19 6.0
12 name12 24 31 28 27.67 24 7.0
13 name13 28 27 28 27.67 27 7.0
14 name14 27 29 27 27.67 27 7.0
15 name15 29 26 29 28.00 26 8.0
16 name16 29 26 30 28.33 26 9.0
17 name17 30 31 26 29.00 26 10.0
18 name18 33 27 30 30.00 27 11.0
19 name19 29 31 30 30.00 29 11.0
20 name20 30 36 31 32.33 30 12.0
21 name21 36 30 32 32.67 30 13.0
22 name22 38 33 36 35.67 33 14.0
23 name23 30 27 99 52.00 27 15.0
24 name24 99 27 32 52.67 27 16.0
25 name25 37 99 36 57.33 36 17.0
如果您想要列表列表 -
df = df.set_index('rank').reset_index()
df.values.tolist()
添加回答
举报