如果我有压缩 csvs 形式的大量数据,我如何将它组合成一个 csv 文件(压缩输出与否无关紧要)?我正在将它读入 spark Dataframes,但后来我陷入了如何连接 pyspark Dataframes 的问题。下面是我运行循环的代码,并希望为每次循环运行附加数据帧: schema=StructType([]) result = spark.createDataFrame(sc.emptyRDD(), schema) for day in range(1,31): day_str = str(day) if day>=10 else "0"+str(day) print 'Ingesting %s' % day_str df = spark.read.format("csv").option("header", "false").option("delimiter", "|").option("inferSchema", "true").load("s3a://key/201811%s" % (day_str)) result = result.unionAll(df) result.write.save("s3a://key/my_result.csv", format='csv')这给了我错误AnalysisException: u"Union can only be performed on tables with the same number of columns, but the first table has 0 columns and the second table has 1 columns;;\n'Union\n:- LogicalRDD\n+- Relation[_c0#75] csv\n"。任何人都可以帮助我如何继续?
1 回答

阿晨1998
TA贡献2037条经验 获得超6个赞
这对我有用:
result=spark.createDataFrame(sc.emptyRDD(), schema_mw)
for day in range(1,31):
day_str = str(day) if day>=10 else "0"+str(day)
print 'Ingesting %s' % day_str
df = spark.read.format("csv").option("header", "false").option("delimiter", ",").schema(schema_mw).load("s3a://bucket/201811%s" % (day_str))
if result:
result = result.union(df)
else:
result = df
result.repartition(1).write.save("s3a://bucket/key-Compiled", format='csv', header=False)
但是,当我尝试在重新分区的最后一步中将标头加载为 true 时,这有效,标头存储为一行。我不确定如何将这些标题添加为标题而不是一行。
添加回答
举报
0/150
提交
取消