2 回答
TA贡献1785条经验 获得超8个赞
这是正确的。+1 给他的 shift() 方法。然后,用户需求发生了变化。所以,这是我对最新要求的回答。
#import pandas for managing data with dataframe
import pandas as pd
#import tabulate to print your data frame as table
from tabulate import tabulate
#Create a data dictionary
myData={'Numbers':[1000,1002,1003,0,0,0,0,0,0],'Date':['12/1/2018','12/2/2018','12/3/2018','12/4/2018','12/5/2018','12/6/2018','12/7/2018','12/8/2018','12/9/2018'],'Mean':[1,0,0.5,0.6,0.4,0.1,-0.7,0.2,-0.1]}
#Create a data frame from the data dictionary using pandas. User mentioned that the data is already in the
#pandas data frame
myDataFrame=pd.DataFrame(myData)
#Print your final table (just pretty print)
print(tabulate(myDataFrame, headers='keys', tablefmt='psql'))
#Declare a list
MultiplicationList=[]
#Declare a constant
StorePreviousValue=0
for i in range(0,len(myDataFrame['Numbers'])):
#If it is the first row then use the Number
if i==0:
#Append the value to the list
MultiplicationList.append(myDataFrame['Numbers'][i])
else:
#If it is not the first row, and the value in the first column of the previous row is '0'
#multiply Mean with the previous multiplication result
if myDataFrame['Numbers'][i-1]==0:
StorePreviousValue=StorePreviousValue*myDataFrame['Mean'][i]
#If it is not the first row, and the value in the first column of the previous row is not '0'
#(should probably say greate than '0', but the question is not clear about that), then
#multiply Mean with the Number in the first column of the previous row
else:
StorePreviousValue=myDataFrame['Numbers'][i-1]*myDataFrame['Mean'][i]
#Append the value to the list
MultiplicationList.append(StorePreviousValue)
#Create a new column in the data frame and pass the list as the value
myDataFrame['Multiplication']=MultiplicationList
#Print your final table (just pretty print)
print(tabulate(myDataFrame, headers='keys', tablefmt='psql'))
这是输出
+----+-----------+-----------+--------+
| | Numbers | Date | Mean |
|----+-----------+-----------+--------|
| 0 | 1000 | 12/1/2018 | 1 |
| 1 | 1002 | 12/2/2018 | 0 |
| 2 | 1003 | 12/3/2018 | 0.5 |
| 3 | 0 | 12/4/2018 | 0.6 |
| 4 | 0 | 12/5/2018 | 0.4 |
| 5 | 0 | 12/6/2018 | 0.1 |
| 6 | 0 | 12/7/2018 | -0.7 |
| 7 | 0 | 12/8/2018 | 0.2 |
| 8 | 0 | 12/9/2018 | -0.1 |
+----+-----------+-----------+--------+
+----+-----------+-----------+--------+------------------+
| | Numbers | Date | Mean | Multiplication |
|----+-----------+-----------+--------+------------------|
| 0 | 1000 | 12/1/2018 | 1 | 1000 |
| 1 | 1002 | 12/2/2018 | 0 | 0 |
| 2 | 1003 | 12/3/2018 | 0.5 | 501 |
| 3 | 0 | 12/4/2018 | 0.6 | 601.8 |
| 4 | 0 | 12/5/2018 | 0.4 | 240.72 |
| 5 | 0 | 12/6/2018 | 0.1 | 24.072 |
| 6 | 0 | 12/7/2018 | -0.7 | -16.8504 |
| 7 | 0 | 12/8/2018 | 0.2 | -3.37008 |
| 8 | 0 | 12/9/2018 | -0.1 | 0.337008 |
+----+-----------+-----------+--------+------------------+
如果您没有 pandas 或 tabulate,请使用 pip install pandas pip install tabulate 进行安装
如果您不熟悉 pip,请谷歌搜索。此答案假设您知道如何从文件中读取数据并创建数据字典。如果你不这样做,那将是另一个要问的问题。
TA贡献1853条经验 获得超6个赞
如果您使用 Pandas 数据框,则可以使用shift()方法:
df['Multiplication'] = df.Mean * df.Numbers.shift(1)
df.loc[0, 'Multiplication'] = df.Numbers[0]
for i in range(len(df[df.Numbers.shift(1) == 0])):
df.loc[df[df.Numbers.shift(1) == 0].index, 'Multiplication'] = df[df.Numbers.shift(1) == 0].Mean.values * df[df.index.isin(df[df.Numbers.shift(1) == 0].index-1)].Multiplication.values
具有以下输出:
第一行你没有两个数字相乘,所以更新值是在乘法之后产生的。
现在满足零数值的要求。
正如@Raj006 所建议的那样,稍微分解一下代码:
# return just the rows that match the condition (Numbers column 0 for the row before)
df[df.Numbers.shift(1) == 0].index
# update the values for the column Multiplication with the matching rows
df.loc[df[df.Numbers.shift(1) == 0].index, 'Multiplication']
# the value to be update is the [Mean value for the matching rows] * [rows before the matching Multiplication value]
df[df.Numbers.shift(1) == 0].Mean.values * df[df.index.isin(df[df.Numbers.shift(1) == 0].index-1)].Multiplication.values
编辑:不幸的是,我不得不使用 for 循环来运行匹配行的次数,一旦计算取决于之前的计算。
添加回答
举报