我正在为具有自定义指标的多类分类问题(4 个类)开发 Keras 模型。问题是我无法为此模型开发自定义指标。当我运行模型时,指标的值为空。这是我的模型:nb_classes = 4model = Sequential()model.add(LSTM( units=50, return_sequences=True, input_shape=(20,18), dropout=0.2, recurrent_dropout=0.2 ) )model.add(Dropout(0.2))model.add(Flatten())model.add(Dense(units=nb_classes, activation='softmax'))model.compile(loss="categorical_crossentropy",optimizer='adadelta')history = model.fit(np.array(X_train), y_train, validation_data=(np.array(X_test), y_test), epochs=50, batch_size=2, callbacks=[model_metrics], shuffle=False, verbose=1)这是如何model_metrics定义的:class Metrics(Callback): def on_train_begin(self, logs={}): self.val_f1s = [] self.val_recalls = [] self.val_precisions = [] def on_epoch_end(self, epoch, logs={}): val_predict = np.argmax((np.asarray(self.model.predict(self.validation_data[0]))).round(), axis=1) val_targ = np.argmax(self.validation_data[1], axis=1) _val_f1 = metrics.f1_score(val_targ, val_predict, average='weighted') _val_recall = metrics.recall_score(val_targ, val_predict, average='weighted') _val_precision = metrics.precision_score(val_targ, val_predict, average='weighted') self.val_f1s.append(_val_f1) self.val_recalls.append(_val_recall) self.val_precisions.append(_val_precision) print(" — val_f1: %f — val_precision: %f — val_recall %f".format(_val_f1, _val_precision, _val_recall)) returnmodel_metrics = Metrics() 你可以看到val_f1: %f — val_precision: %f — val_recall %f。没有度量值。为什么?我究竟做错了什么?
添加回答
举报
0/150
提交
取消