我正在尝试按某一年的最高值对我的 groupby 对象进行排序 - 即 2018 年的值。然而,没有成功。代码:aggs = {'sales':'sum')df.groupby(by=['segment', 'year'].agg(aggs)分组时pandas的默认结果(按Level0的字母顺序排序,然后按Level1升序)Segment Year Sales A 2016 2 A 2017 10 A 2018 6 B 2016 1 B 2017 4 B 2018 8预期结果:Segment Year Sales B 2016 1 B 2017 4 B 2018 8 A 2016 2 A 2017 10 A 2018 6即A排在B之后,因为2018年B的总和是8,而A是6。
1 回答

扬帆大鱼
TA贡献1799条经验 获得超9个赞
创意是按Categorical类别按过滤值创建的,2018并按以下方式排序Sales:
cats = df[df['Year'] == 2018].sort_values('Sales', ascending=False)['Segment']
aggs = {'Sales':'sum'}
df['Segment'] = pd.Categorical(df['Segment'], ordered=True, categories=cats)
df1 = df.groupby(by=['Segment', 'Year']).agg(aggs)
print (df1)
Sales
Segment Year
B 2016 1
2017 4
2018 8
A 2016 2
2017 10
2018 6
添加回答
举报
0/150
提交
取消