背景:我有一个从数据库中获取一堆属性的函数。这是函数:def getData(key, full_name, address, city, state, zipcode): try: url = 'https://personator.melissadata.net/v3/WEB/ContactVerify/doContactVerify' payload={ 'TransmissionReference': "test", # used by you to keep track of reference 'Actions': 'Check', 'Columns': 'Gender','DateOfBirth','DateOfDeath','EthnicCode','EthnicGroup','Education','PoliticalParty','MaritalStatus','HouseholdSize','ChildrenAgeRange','PresenceOfChildren','PresenceOfSenior','LengthOfResidence','OwnRent','CreditCardUser','Occupation','HouseholdIncome', 'CustomerID': key,# key 'Records': [{'FullName': str(full_name), 'AddressLine1': str(address), 'City': str(city), 'State': str(state), 'PostalCode': str(zipcode)}] } headers = {'Content-Type': 'application/json; charset=utf-8', 'Accept':'application/json', 'Host':'personator.melissadata.net','Expect': '100-continue', 'Connection':'Keep-Alive'} r = requests.post(url, data=json.dumps(payload), headers=headers)为了制作“性别”列,我将函数包装成一个 lambdadf['Gender'] = df.apply(lambda row: getData(key, row['Full Name'], row['Address'], row['City'], row['State'], row['Zipcode']))目标: 我想对您在 Gender 下方看到的所有其他属性同时执行此过程,我如何在 Python 中执行此操作。
1 回答
心有法竹
TA贡献1866条经验 获得超5个赞
你可以返回一个字典,然后展开一系列字典对象:
fields = ['Gender', 'DateOfBirth', etc.]
def getData(key, full_name, address, city, state, zipcode):
try:
# your code as before
dom = json.loads(r.text)
return {k: dom['Records'][0][k] for k in fields}
# modify below: good practice to specify exactly which error(s) to catch
except:
return {}
然后扩展您的字典系列:
dcts = df.apply(lambda row: getData(key, row['Full Name'], row['Address'], row['City'],
row['State'], row['Zipcode']), axis=1)
df = df.join(pd.DataFrame(dcts.tolist()))
根据@spaniard 的评论,如果你想要所有可用的字段,你可以简单地使用:
return json.loads(r.text)['Records'][0]
添加回答
举报
0/150
提交
取消