在 jupyter notebook 中,我对资源进行 OO 建模,但在控制循环中需要聚合多个对象的数据,与 ufunc 和类似操作相比效率低下。为了打包功能,我选择了面向对象,但为了高效简洁的代码,我可能必须将数据提取到存储类中(可能)并将所有 ri[0] 行推送到二维数组中,在本例中为 (2,K)。该类不需要日志,只需要最后一个条目。K = 100class Resource: def __init__(self): self.log = np.random( (5,K) ) # log gets filled during simulationr0 = Resource()r1 = Resource()# while control loop: #aggregate control data for k in K: total_row_0 = r0.log[0][k] + r1.log[0][k] #do sth with the totals and loop again这将大大提高性能,但如果单独存储,我很难将数据链接到类。你会如何处理这个问题?pandas DataFrames、np View 还是浅拷贝?[[...] #r0 [...] ]#r1 same data into one array, efficient but map back to class difficult
1 回答
海绵宝宝撒
TA贡献1809条经验 获得超8个赞
这是我的看法:
import numpy as np
K = 3
class Res:
logs = 2
def __init__(self):
self.log = None
def set_log(self, view):
self.log = view
batteries = [Res(), Res()]
d = {'Res': np.random.random( (Res.logs * len(batteries), K) )}
for i in range(len(batteries)):
view = d['Res'].view()[i::len(batteries)][:]
batteries[i].set_log(view)
print(d)
batteries[1].log[1][2] = 1#test modifies view of last entry of second Res of second log
print(d)
添加回答
举报
0/150
提交
取消