使用 Pandas,我可以通过mySeries.dt.date.一个 numpy 列看起来如何?例子:import pandas as pddf = pd.DataFrame({"a": ["31.12.1999 23:59:12", "31.12.1999 23:59:13", "31.12.1999 23:59:14"], "b": [4, 5, 6]})df["datetime"] = pd.to_datetime(df.a)df["date"]=df.datetime.dt.dateprint("df.columns:", df.columns)df.columns: Index(['a', 'b', 'datetime', 'date'], dtype='object')<!--># convert to numpy arraydfVal = df.values# display datetimeprint("dfVal[:,2]:", dfVal[:, 2])dfVal[:,2]: [Timestamp('1999-12-31 23:59:12') Timestamp('1999-12-31 23:59:13') Timestamp('1999-12-31 23:59:14')]<!_-># try to convertdfVal[:, 2].dt.date<!-->Traceback (most recent call last): File "/home/user/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2963, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-12-5cead683e881>", line 1, in <module> dfVal[:, 2].dt.dateAttributeError: 'numpy.ndarray' object has no attribute 'dt'
1 回答
跃然一笑
TA贡献1826条经验 获得超6个赞
df
a b datetime
0 31.12.1999 23:59:12 4 1999-12-31 23:59:12
1 31.12.1999 23:59:13 5 1999-12-31 23:59:13
2 31.12.1999 23:59:14 6 1999-12-31 23:59:14
arr = df['datetime'].values
dt.date
arr.astype('datetime64[D]')
# array(['1999-12-31', '1999-12-31', '1999-12-31'], dtype='datetime64[D]')
dt.month
arr.astype('datetime64[M]') - arr.astype('datetime64[Y]') + 1
# array([12, 12, 12], dtype='timedelta64[M]')
dt.year
arr.astype('datetime64[Y]')
# array(['1999', '1999', '1999'], dtype='datetime64[Y]')
dt.date
arr.astype('datetime64[D]') - arr.astype('datetime64[M]') + 1
# array([31, 31, 31], dtype='timedelta64[D]')
添加回答
举报
0/150
提交
取消