3 回答

TA贡献1784条经验 获得超2个赞
这是一个简单的功能来做到这一点。
def skipgram(corpus, window_size = 3):
sg = []
for sent in corpus:
sent = sent[0].split()
if len(sent) <= window_size:
sg.append(sent)
else:
for i in range(0, len(sent)-window_size+1):
sg.append(sent[i: i+window_size])
return sg
corpus = [["my name is John"] , ["This PC is black"]]
skipgram(corups)

TA贡献1895条经验 获得超7个赞
你并不是真的想要一个skipgram本身,但你想要一个按大小划分的块,试试这个:
from lazyme import per_chunk
tokens = "my name is John".split()
list(per_chunk(tokens, 2))
[出去]:
[('my', 'name'), ('is', 'John')]
如果你想要一个滚动窗口,即ngrams:
from lazyme import per_window
tokens = "my name is John".split()
list(per_window(tokens, 2))
[出去]:
[('my', 'name'), ('name', 'is'), ('is', 'John')]
同样在 ngrams 的 NLTK 中:
from nltk import ngrams
tokens = "my name is John".split()
list(ngrams(tokens, 2))
[出去]:
[('my', 'name'), ('name', 'is'), ('is', 'John')]
如果你想要实际的skipgrams,如何在python中计算skipgrams?
from nltk import skipgrams
tokens = "my name is John".split()
list(skipgrams(tokens, n=2, k=1))
[出去]:
[('my', 'name'),
('my', 'is'),
('name', 'is'),
('name', 'John'),
('is', 'John')]

TA贡献1880条经验 获得超4个赞
尝试这个!
from nltk import ngrams
def generate_ngrams(sentences,window_size =3):
for sentence in sentences:
yield from ngrams(sentence[0].split(), window_size)
sentences= [["my name is John"] , ["This PC is black"]]
for c in generate_ngrams(sentences,3):
print (c)
#output:
('my', 'name', 'is')
('name', 'is', 'John')
('This', 'PC', 'is')
('PC', 'is', 'black')
添加回答
举报