有一个 Python 脚本,我在其中实例化了神经网络类的两个对象。每个对象定义自己的会话并提供保存图形的方法。import tensorflow as tfimport os, shutilclass TestNetwork: def __init__(self, id): self.id = id tf.reset_default_graph() self.s = tf.placeholder(tf.float32, [None, 2], name='s') w_initializer, b_initializer = tf.random_normal_initializer(0., 1.0), tf.constant_initializer(0.1) self.k = tf.layers.dense(self.s, 2, kernel_initializer=w_initializer, bias_initializer=b_initializer, name= 'k') '''Defines self.session and initialize the variables''' session_conf = tf.ConfigProto( allow_soft_placement = True, log_device_placement = False) self.session = tf.Session(config = session_conf) self.session.run(tf.global_variables_initializer()) def save_model(self, output_dir): '''Save the network graph and weights to disk''' if os.path.exists(output_dir): # if provided output_dir already exists, remove it shutil.rmtree(output_dir) builder = tf.saved_model.builder.SavedModelBuilder(output_dir) builder.add_meta_graph_and_variables( self.session, [tf.saved_model.tag_constants.SERVING], clear_devices=True) # create a new directory output_dir and store the saved model in it builder.save()t1 = TestNetwork(1)t2 = TestNetwork(2)t1.save_model("t1_model")t2.save_model("t2_model")我得到的错误是类型错误:无法将 feed_dict 键解释为张量:名称“save/Const:0”指的是不存在的张量。图中不存在“save/Const”操作。我读到一些说这个错误是由于tf.train.Saver.因此,我在__init__方法的末尾添加了以下行:self.saver = tf.train.Saver(tf.global_variables(), max_to_keep = 5)但是我仍然收到错误。
添加回答
举报
0/150
提交
取消