我有一个代码可以让我获得 SVM 的准确性,但我想知道 0 类和 1 类分别是多少。这是代码from sklearn.svm import SVCfrom sklearn.metrics import accuracy_scoreclf = SVC(C=10000.0, kernel='rbf')t0 = time()clf.fit(features_train, labels_train)print "training_time:", round(time()-t0, 3), "s"t0 = time()pred = clf.predict(features_test)print "prediction time:", round(time()-t0, 3), "s"acc = accuracy_score(pred, labels_test)print acc我已经尝试过下面的代码,但没有成功......from sklearn.svm import SVCfrom sklearn.metrics import accuracy_scoreclf = SVC(C=10000.0, kernel='rbf', probability=True)t0 = time()clf.fit(features_train, labels_train)print "training_time:", round(time()-t0, 3), "s"t0 = time()pred = clf.predict(features_test)class = clf.predict_proba(features_test)print sum(class)print "prediction time:", round(time()-t0, 3), "s"acc = accuracy_score(pred, labels_test)print acc我错过了什么?泰!
1 回答

潇湘沐
TA贡献1816条经验 获得超6个赞
您可以创建混淆矩阵来了解您的预测
from sklearn.metrics import confusion_matrix
confusion_matrix(labels_test, pred)
添加回答
举报
0/150
提交
取消