我正在尝试实现一个应该学习灰度图像的简单神经网络。输入由像素的 2d 索引组成,输出应该是该像素的值。该网络的构造如下:每个神经元都连接到输入(即像素的索引)以及每个先前神经元的输出。输出只是这个序列中最后一个神经元的输出。这种网络在学习图像方面非常成功,如这里所示。问题: 我在执行之间的损失的功能住宿0.2,并0.4取决于神经元数目,学习速率和使用迭代的次数,这是非常糟糕的。此外,如果您将输出与我们在那里训练的内容进行比较,它看起来就像是噪音。但这是我第一次torch.cat在网络内使用,所以我不确定这是否是罪魁祸首。谁能看到我做错了什么?from typing import Listimport torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimfrom torch.nn import Linearclass My_Net(nn.Module): lin: List[Linear] def __init__(self): super(My_Net, self).__init__() self.num_neurons = 10 self.lin = nn.ModuleList([nn.Linear(k+2, 1) for k in range(self.num_neurons)]) def forward(self, x): v = x recent = torch.Tensor(0) for k in range(self.num_neurons): recent = F.relu(self.lin[k](v)) v = torch.cat([v, recent], dim=1) return recent def num_flat_features(self, x): size = x.size()[1:] num = 1 for i in size(): num *= i return nummy_net = My_Net()print(my_net)#define a small 3x3 image that the net is supposed to learnmy_image = [[1.0, 1.0, 1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0]] #represents a T-shapemy_image_flat = [] #output of the net is the value of a pixelmy_image_indices = [] #input to the net is are the 2d indices of a pixelfor i in range(len(my_image)): for j in range(len(my_image[i])): my_image_flat.append(my_image[i][j]) my_image_indices.append([i, j])#optimization loopfor i in range(100): inp = torch.Tensor(my_image_indices) out = my_net(inp) target = torch.Tensor(my_image_flat) criterion = nn.MSELoss() loss = criterion(out.view(-1), target) print(loss) my_net.zero_grad() loss.backward() optimizer = optim.SGD(my_net.parameters(), lr=0.001) optimizer.step()print("output of current image")print([[my_net(torch.Tensor([[i,j]])).item() for i in range(3)] for j in range(3)])print("output of original image")print(my_image)
添加回答
举报
0/150
提交
取消