1 回答

TA贡献1856条经验 获得超5个赞
正向映射:
形状的顺序应该是(num of rows, num of cols, channnels),所以它变成 imgForward = np.ndarray(shape=(int(rows + cols*Bx),int(cols + rows*By),3))
不需要这条线 np.matmul(imgForward,np.array([[rows],[cols]]))
然后,您必须在新位置复制所有 3 个频道
imgForward[int(row+col*Bx), int(col+row*By),:] = img[row,col,:]
反向映射
只有你需要改变int(row+col*Bx), int(col+row*By)与int(row-col*Bx), int(col-row*By)
所以你的代码变成
import cv2
import numpy as np
img = cv2. imread('one.jpg')
rows, cols, c = img.shape
Bx = 0.2
By = 0.3
def forMap (img,Bx,By):
rows = img.shape[0]
cols = img.shape[1]
imgForward = np.zeros((int(rows + cols*Bx),int(cols + rows*By),3), dtype=np.ubyte)
for row in range(rows):
for col in range(cols):
#np.matmul(imgForward,np.array([[rows],[cols]]))
imgForward[int(row+col*Bx), int(col+row*By),:] = img[row,col,:]
return imgForward
def backMap (img, Bx, By):
rows = img.shape[0]
cols = img.shape[1]
imgBackwards = np.zeros(shape=img.shape, dtype=np.ubyte);
for row in range(rows):
for col in range(cols):
backCol = int (col-row*By)
backRow = int (row-col*Bx)
#np.matmul(imgBackwards,np.array([[rows],[cols],3]))
imgBackwards[backRow, backCol, :] = img[row,col,:]
return imgBackwards
fimg = forMap(img, Bx, By)
bimg = backMap(fimg, Bx, By)
cv2.imshow("original image", img)
cv2.imshow("Forward Mapping", fimg)
cv2.imshow("Backward mapping", bimg)
cv2.waitKey(0)
cv2.destroyAllWindows()
添加回答
举报