我已经把standardScaler 放在管道上,CV_mlpregressor.predict(x_test) 的结果很奇怪。我想我必须从standardScaler 带回这些值,但仍然无法弄清楚如何。pipe_MLPRegressor = Pipeline([('scaler', StandardScaler()), ('MLPRegressor', MLPRegressor(random_state = 42))])grid_params_MLPRegressor = [{ 'MLPRegressor__solver': ['lbfgs'], 'MLPRegressor__max_iter': [100,200,300,500], 'MLPRegressor__activation' : ['relu','logistic','tanh'], 'MLPRegressor__hidden_layer_sizes':[(2,), (4,),(2,2),(4,4),(4,2),(10,10),(2,2,2)],}]CV_mlpregressor = GridSearchCV (estimator = pipe_MLPRegressor, param_grid = grid_params_MLPRegressor, cv = 5,return_train_score=True, verbose=0)CV_mlpregressor.fit(x_train, y_train)CV_mlpregressor.predict(x_test)结果:array([ 2.67564153e+04, 1.90010572e+04, 9.62702942e+04, 3.98791931e+04, 1.48889808e+03, 7.08980726e+03, 3.86311279e+02, 7.05602301e+04, 4.06858486e+03, 4.29186303e+04, 3.86701735e+03, 6.30228075e+04, 6.78276925e+04, -5.91956287e+02, -7.37680434e+02, 3.07485001e+04, 4.81417953e+03, 5.18697686e+03, 1.61221952e+04, 1.33794944e+04, -1.48375101e+03, 1.80891807e+04, 1.39740243e+04, 6.57156849e+04, 3.32962481e+04, 5.71332087e+05, 1.79130092e+03, 5.25642370e+04, 2.08111172e+04, 4.31060127e+04])提前致谢。
添加回答
举报
0/150
提交
取消