在询问了已经提出的关于这个问题的问题之后,我继续提出它。我试图将字母从 A 分类到 D。所有输入图像都是 64x64 和灰色。我的CNN的第一层是:model = Sequential()model.add(Conv2D(32, (3, 3), input_shape = input_shape, activation = 'relu'))而且input_shape它来自何处:# Define the number of classesnum_classes = 4labels_name={'A':0,'B':1,'C':2,'D':3}img_data_list=[]labels_list=[]for dataset in data_dir_list: img_list=os.listdir(data_path+'/'+ dataset) print ('Loading the images of dataset-'+'{}\n'.format(dataset)) label = labels_name[dataset] for img in img_list: input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img ) input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY) input_img_resize=cv2.resize(input_img,(128,128)) img_data_list.append(input_img_resize) labels_list.append(label)img_data = np.array(img_data_list)img_data = img_data.astype('float32')img_data /= 255print (img_data.shape)labels = np.array(labels_list)print(np.unique(labels,return_counts=True))#convert class labels to on-hot encodingY = np_utils.to_categorical(labels, num_classes)#Shuffle the datasetx,y = shuffle(img_data,Y, random_state=2)# Split the datasetX_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)#Defining the modelinput_shape=img_data[0].shapeprint(input_shape)
添加回答
举报
0/150
提交
取消