我正在尝试结合这两个示例并为我的 android 应用程序创建 tflite 文件。https://medium.com/nybles/create-your-first-image-recognition-classifier-using-cnn-keras-and-tensorflow-backend-6eaab98d14ddhttps://medium.com/@xianbao.qian/convert-keras-model-to-tflite-e2bdf28ee2d2这是我的代码:# Part 1 - Building the CNN# Importing the Keras libraries and packagesfrom keras.models import Sequentialfrom keras.layers import Convolution2Dfrom keras.layers import MaxPooling2Dfrom keras.layers import Flattenfrom keras.layers import Denseimport tensorflow as tffrom keras.models import load_model# Initialising the CNNclassifier = Sequential()# Step 1 - Convolutionclassifier.add(Convolution2D(32, 3, 3, input_shape = (64, 64, 3), activation = 'relu'))# Step 2 - Poolingclassifier.add(MaxPooling2D(pool_size = (2, 2)))# Adding a second convolutional layerclassifier.add(Convolution2D(32, 3, 3, activation = 'relu'))classifier.add(MaxPooling2D(pool_size = (2, 2)))# Step 3 - Flatteningclassifier.add(Flatten())# Step 4 - Full connectionclassifier.add(Dense(output_dim = 128, activation = 'relu'))classifier.add(Dense(output_dim = 1, activation = 'sigmoid'))# Compiling the CNNclassifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])# Part 2 - Fitting the CNN to the imagesfrom keras.preprocessing.image import ImageDataGeneratortrain_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True)在这一行:frozen_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, output_names)我有一个例外:tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value conv2d_1/bias[[Node: _retval_conv2d_1/bias_0_0 = _Retval[T=DT_FLOAT, index=0, _device="/job:localhost/replica:0/task:0/device:CPU:0"](conv2d_1/bias)]]我是机器学习的初学者,完全不知道这个错误是什么:-(有人可以向我解释什么是错的吗?我所需要的只是处理多个包含许多图片的文件夹,并可以预测新图片与特定文件夹的关系。谢谢你。
添加回答
举报
0/150
提交
取消