我想在 Python 中调用 Matlab .m 文件和函数,但是由于 Matlab 和 Python 之间的数据类型不同,出现了关于 .m 文件的错误TypeError: unsupported Python data type: numpy.ndarray。作为以下代码中的示例VoxelSizeUnification,我想在 Python 中调用它的 Matlab 函数,其输入来自 Python 数据类型:import matlab.engineeng = matlab.engine.start_matlab()xyzSpacing = [dcm_image.SliceThickness, dcm_image.PixelSpacing[1], dcm_image.PixelSpacing[0]]xyzNewSpacing = [1.25, 1.25, 1.25]eng.VoxelSizeUnification(volume_image, xyzNewSpacing, xyzSpacing) # TypeError: unsupported Python data type: numpy.ndarray那:volume_image is {ndarray} and includes images as: volume_image[number of slices in 3rd dimenson = 133, rows=512, columns=512].xyzNewSpacing and xyzSpacing are <class 'list'> with size of (1 x 3)此外,我使用link1 进行搜索,但我不想保存文件然后加载它们。同样在link2 中,mlab 应该使用 python>=2.7 并且我的 Python 是 3.6.6 和 Matlab 2017b。另外,我已经matlab.double用一个例子尝试并测试了上面的代码,没有任何错误:xyzNewSpacing = matlab.double([1.25, 1.25, 1.25])xyzSpacing = matlab.double([1.5, 1.5, 1.5])vol = matlab.double([[[1, 2, 1], [3, 1, 5], [2, 1, 2]], [[2, 3, 1], [1, 2, 3], [2, 1, 3]], [[4, 2, 1], [2, 3, 1], [3, 2, 1]]])ret = eng.VoxelSizeUnification(vol, xyzNewSpacing, xyzSpacing)但是,对于volume_image这是图像的3D阵列,收到错误约:ValueError: initializer must be a rectangular nested sequence。Python:xyzNewSpacing = matlab.double([1.25, 1.25, 1.25])xyzSpacing = matlab.double([1.5, 1.5, 1.5])d = matlab.double(volume_image) # ValueError: initializer must be a rectangular nested sequenceret = eng.VoxelSizeUnification(d, xyzSpacing, xyzNewSpacing)MATLAB:function outputSize = VoxelSizeUnification(d, xyzSpacing, xyzNewSpacing) outputSize = [ceil((d(1)*xyzSpacing(1))/xyzNewSpacing(1))... ceil((d(2)*xyzSpacing(2))/xyzNewSpacing(2))... ceil((d(3)*xyzSpacing(3))/xyzNewSpacing(3))];end的原因是ValueError: initializer must be a rectangular nested sequence什么?谢谢。
2 回答

30秒到达战场
TA贡献1828条经验 获得超6个赞
错误是因为datatypes
使用volume_image = volume_image.tolist()
错误已解决。然而,它花费了大量的运行时间。所以,如果每个人都有好主意,请分享它。
添加回答
举报
0/150
提交
取消