为了账号安全,请及时绑定邮箱和手机立即绑定

在轮廓 opencv 上找到主色

在轮廓 opencv 上找到主色

幕布斯6054654 2021-07-05 12:13:56
我试图在轮廓(黑色或白色)内找到主色。我正在使用 OpenCV 读取图像并在黑色图像上提取白色。这是我到目前为止得到的:绿色轮廓是轮廓,蓝色线条是边界框。所以我在这个例子中我试图提取数字 87575220 但正如你所看到的,它也识别出一些随机伪像,例如字母 G。我认为解决方案是在轮廓内找到主色,这种颜色应该是接近白色。我不知道如何做到这一点。这是我目前拥有的代码:import argparseimport cv2import imutilsimport numpy as npparser = argparse.ArgumentParser()parser.add_argument("--image", "-i", required=True, help="Image to detect blobs from")args = vars(parser.parse_args())image = cv2.imread(args["image"])image = imutils.resize(image, width=1200)grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(grey)maxval_10 = maxVal * 0.5ret, threshold = cv2.threshold(grey, maxval_10, 255, cv2.THRESH_BINARY)canny = cv2.Canny(grey, 200, 250)lines = cv2.HoughLines(canny, 1, np.pi / 180, 140)print(maxVal)theta_min = 60 * np.pi / 180.theta_max = 120 * np.pi / 180.0theta_avr = 0theta_deg = 0filteredLines = []for rho, theta in lines[0]:    a = np.cos(theta)    b = np.sin(theta)    x0 = a * rho    y0 = b * rho    x1 = int(x0 + 1000 * (-b))    y1 = int(y0 + 1000 * (a))    x2 = int(x0 - 1000 * (-b))    y2 = int(y0 - 1000 * (a))    cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)    if theta_min <= theta <= theta_max:        filteredLines.append(theta)        theta_avr += thetaif len(filteredLines) > 0:    theta_avr /= len(filteredLines)    theta_deg = (theta_avr / np.pi * 180) - 90else:    print("Failed to detect skew")image = imutils.rotate(image, theta_deg)canny = imutils.rotate(canny, theta_deg)im2, contours, hierarchy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# cv2.drawContours(image, contours, -1, (0, 255, 0), 1)cv2.imshow('Contours', im2)boundingBoxes = []filteredContours = []for cnt in contours:    (x, y, w, h) = cv2.boundingRect(cnt)    if (h > 20 and h < 90 and w > 5 and w < h):        if cv2.contourArea(cnt, True) <= 0:            boundingBoxes.append((x, y, w, h))            filteredContours.append(cnt)
查看完整描述

3 回答

?
HUH函数

TA贡献1836条经验 获得超4个赞

您可以从每个轮廓创建一个蒙版:


mask = np.zeros(image.shape, dtype="uint8")

cv2.drawContours(mask, [cnt], -1, 255, -1)

然后计算掩码内所有像素的平均值:


mean = cv2.mean(image, mask=mask)

然后检查是否mean足够接近白色


查看完整回答
反对 回复 2021-07-21
?
慕容森

TA贡献1853条经验 获得超18个赞

由于颜色空间属性,颜色和均值不能很好地匹配。我会创建一个直方图并选择最常见的一个(也可以应用一些颜色下采样)


查看完整回答
反对 回复 2021-07-21
  • 3 回答
  • 0 关注
  • 193 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信