我看过类似的帖子,但没有完整的答案,因此在这里发帖。我在 Spark 中使用 TF-IDF 来获取文档中具有最大 tf-idf 值的单词。我使用下面的一段代码。from pyspark.ml.feature import HashingTF, IDF, Tokenizer, CountVectorizer, StopWordsRemovertokenizer = Tokenizer(inputCol="doc_cln", outputCol="tokens")remover1 = StopWordsRemover(inputCol="tokens", outputCol="stopWordsRemovedTokens")stopwordList =["word1","word2","word3"]remover2 = StopWordsRemover(inputCol="stopWordsRemovedTokens", outputCol="filtered" ,stopWords=stopwordList)hashingTF = HashingTF(inputCol="filtered", outputCol="rawFeatures", numFeatures=2000)idf = IDF(inputCol="rawFeatures", outputCol="features", minDocFreq=5)from pyspark.ml import Pipelinepipeline = Pipeline(stages=[tokenizer, remover1, remover2, hashingTF, idf])model = pipeline.fit(df)results = model.transform(df)results.cache()我得到的结果是|[a8g4i9g5y, hwcdn] |(2000,[905,1104],[7.34977707433047,7.076179741760428]) 在哪里filtered: array (nullable = true)features: vector (nullable = true)如何从“特征”中提取数组?理想情况下,我想得到对应于最高 tfidf 的单词,如下所示|a8g4i9g5y|7.34977707433047提前致谢!
添加回答
举报
0/150
提交
取消