我的问题是,当我尝试拟合模型时,出现此错误。我不知道是什么导致了这个错误,但可能自变量的选择不正确。这是错误ValueError: Found input variables with inconsistent numbers of samples: [104, 26]这是我到目前为止构建的代码import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom scipy import stats# Import Excel Filedata = pd.read_excel("C:\\Users\\AchourAh\\Desktop\\Multiple_Linear_Regression\\SP Level Reasons Excels\\SP00105485_PL22_AAB_05_09_2018_Reasons.xlsx",'Sheet1') #Import Excel file# Replace null values of the whole dataset with 0data1 = data.fillna(0)print(data1)# Extraction of the independent and dependent variableX = data1.iloc[0:len(data1),[0,1,2,3]].values.reshape(-1, 1) #Extract the column of the COPCOR SP we are going to check its impactY = data1.iloc[0:len(data1),4].values.reshape(-1, 1) #Extract the column of the PAUS SPprint(X)print(Y)# Importingfrom sklearn.linear_model import LinearRegressionfrom sklearn import model_selection# Fitting a Linear Modellm = LinearRegression() #create an lm object of LinearRegression Classlm.fit(X, Y)plt.scatter(X, Y, color = 'red')#plots scatter graph of COP COR against PAUS for values in X_train and y_trainplt.plot(X, lm.predict(X), color = 'blue')#plots the graph of predicted PAUS against COP COR.plt.title('SP000905974')plt.xlabel('COP COR Quantity')plt.ylabel('PAUS Quantity')plt.show()#Show the graph我的 excel 文件的第一列包含自变量,第四列包含因变量。我有另一个简单线性回归的代码,它工作正常,但是当我尝试应用多元线性回归时,我只是改变了这条线,但我没有做错什么。 X = data1.iloc[0:len(data1),[0,1,2,3]].values.reshape(-1, 1)注意,我是这个的初学者。
添加回答
举报
0/150
提交
取消