我遵循了这个很棒的教程并成功地训练了一个模型(在 CloudML 上)。我的代码也进行离线预测,但现在我正在尝试使用 Cloud ML 进行预测并遇到一些问题。为了部署我的模型,我遵循了本教程。现在我有一个生成TFRecordsvia的代码,apache_beam.io.WriteToTFRecord我想对这些TFRecords. 为此,我正在关注这篇文章,我的命令如下所示:gcloud ml-engine jobs submit prediction $JOB_ID --model $MODEL --input-paths gs://"$FILE_INPUT".gz --output-path gs://"$OUTPUT"/predictions --region us-west1 --data-format TF_RECORD_GZIP但我只得到错误: 'Exception during running the graph: Expected serialized to be a scalar, got shape: [64]似乎它需要不同格式的数据。我在这里找到了 JSON 的格式规范,但找不到如何使用 TFrecords 来实现。更新:这是输出 saved_model_cli show --all --dirMetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:signature_def['prediction']: The given SavedModel SignatureDef contains the following input(s): inputs['example_proto'] tensor_info: dtype: DT_STRING shape: unknown_rank name: input:0 The given SavedModel SignatureDef contains the following output(s): outputs['probability'] tensor_info: dtype: DT_FLOAT shape: (1, 1) name: probability:0 Method name is: tensorflow/serving/predictsignature_def['serving_default']: The given SavedModel SignatureDef contains the following input(s): inputs['example_proto'] tensor_info: dtype: DT_STRING shape: unknown_rank name: input:0 The given SavedModel SignatureDef contains the following output(s): outputs['probability'] tensor_info: dtype: DT_FLOAT shape: (1, 1) name: probability:0 Method name is: tensorflow/serving/predict
添加回答
举报
0/150
提交
取消