我是新手,我正在尝试用 Keras 训练我的模型。我有14节课。以下是我的训练和测试数据的形状:print('train data shape:', X_train.shape)print('one hot shape:', y_train.shape)print('one hot shape:', y_test.shape)print('Number of images in x_train', x_train.shape[0])print('Number of images in x_test', x_test.shape[0])输出:train data shape: (77623, 28, 28, 1)one hot shape: (77623, 14, 14)one hot shape: (500, 14, 14)Number of images in x_train 77623Number of images in x_test 500这是我的模型:model = Sequential()model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))model.add(Conv2D(64, (3, 3), activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Flatten())model.add(Dense(128, activation='relu'))model.add(Dropout(0.5))model.add(Dense(14, activation='softmax'))model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])print(model.summary())型号概要:Layer (type) Output Shape Param # =================================================================conv2d_58 (Conv2D) (None, 26, 26, 32) 320 _________________________________________________________________conv2d_59 (Conv2D) (None, 24, 24, 64) 18496 _________________________________________________________________max_pooling2d_27 (MaxPooling (None, 12, 12, 64) 0 _________________________________________________________________dropout_53 (Dropout) (None, 12, 12, 64) 0 _________________________________________________________________这是对fit方法的调用:history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=0, validation_data=(X_test, y_test), callbacks=[TQDMNotebookCallback()])但我收到此错误:Error when checking target: expected dense_53 to have 2 dimensions, but got array with shape (77623, 14, 14)
添加回答
举报
0/150
提交
取消