1 回答

TA贡献1891条经验 获得超3个赞
要使用可初始化或可重新初始化的迭代器,您必须创建一个继承自 tf.train.SessionRunHook 的类,该类可以在训练和评估步骤中多次访问会话。
然后,您可以使用这个新类来初始化迭代器,您通常会在经典设置中执行此操作。您只需要将这个新创建的钩子传递给训练/评估函数或正确的训练规范。
这是您可以适应您的需求的快速示例:
class IteratorInitializerHook(tf.train.SessionRunHook):
def __init__(self):
super(IteratorInitializerHook, self).__init__()
self.iterator_initializer_func = None # Will be set in the input_fn
def after_create_session(self, session, coord):
# Initialize the iterator with the data feed_dict
self.iterator_initializer_func(session)
def get_inputs(X, y):
iterator_initializer_hook = IteratorInitializerHook()
def input_fn():
X_pl = tf.placeholder(X.dtype, X.shape)
y_pl = tf.placeholder(y.dtype, y.shape)
dataset = tf.data.Dataset.from_tensor_slices((X_pl, y_pl))
dataset = ...
...
iterator = dataset.make_initializable_iterator()
next_example, next_label = iterator.get_next()
iterator_initializer_hook.iterator_initializer_func = lambda sess: sess.run(iterator.initializer,
feed_dict={X_pl: X, y_pl: y})
return next_example, next_label
return input_fn, iterator_initializer_hook
...
train_input_fn, train_iterator_initializer_hook = get_inputs(X_train, y_train)
test_input_fn, test_iterator_initializer_hook = get_inputs(X_test, y_test)
...
estimator.train(input_fn=train_input_fn,
hooks=[train_iterator_initializer_hook]) # Don't forget to pass the hook !
estimator.evaluate(input_fn=test_input_fn,
hooks=[test_iterator_initializer_hook])
添加回答
举报