我有一个名为 IrisData 的类。我在其中定义了一个函数作为描述。description 有多个我想要访问的子功能。我希望我的功能像如果调用描述,它应该返回描述中定义的每个函数。代码行:打印(I.description())当调用内部函数时,它应该只返回内部函数。代码行:打印(I.description.attribute())*PFB 代码片段:class IrisData: def urls(self): self.url='https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' return self.url def columns(self): self.column_name=['sepal length','sepal width','petal length','petal width','class'] return self.column_name def description(self): def title(): self.titles ='Title: Iris Plants Database' return self.titles def source(): self.sources='''Sources: \t(a) Creator: R.A. Fisher \t(b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) \t(c) Date: July, 1988''' return self.sources def info(): self.descri='''Relevant Information: \t--- This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for example. \t--- The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other. \t--- Predicted attribute: class of iris plant. \t--- This is an exceedingly simple domain. \t--- This data differs from the data presented in Fishers article (identified by Steve Chadwick, spchadwick@espeedaz.net ) \tThe 35th sample should be: 4.9,3.1,1.5,0.2,"Iris-setosa" \twhere the error is in the fourth feature. \tThe 38th sample: 4.9,3.6,1.4,0.1,"Iris-setosa" \twhere the errors are in the second and third features. ''' return self.descri def attribute(): self.attri="""Attribute Information:
添加回答
举报
0/150
提交
取消