首先,我是神经网络和Keras的新手。我正在尝试使用Keras创建一个简单的神经网络,其中输入是一个时间序列,输出是另一个相同长度的时间序列(一维矢量)。我制作了伪代码,以使用Conv1D层创建随机的输入和输出时间序列。然后,Conv1D层输出6个不同的时间序列(因为我有6个滤波器),并且我定义的下一层将这些输出的全部6个相加到一个,即整个网络的输出。import numpy as npimport tensorflow as tffrom tensorflow.python.keras.models import Modelfrom tensorflow.python.keras.layers import Conv1D, Input, Lambdadef summation(x): y = tf.reduce_sum(x, 0) return ytime_len = 100 # total length of time seriesnum_filters = 6 # number of filters/outputs to Conv1D layerkernel_len = 10 # length of kernel (memory size of convolution)# create random input and output time seriesX = np.random.randn(time_len)Y = np.random.randn(time_len)# Create neural network architectureinput_layer = Input(shape = X.shape)conv_layer = Conv1D(filters = num_filters, kernel_size = kernel_len, padding = 'same')(input_layer)summation_layer = Lambda(summation)(conv_layer)model = Model(inputs = input_layer, outputs = summation_layer)model.compile(loss = 'mse', optimizer = 'adam', metrics = ['mae'])model.fit(X,Y,epochs = 1, metrics = ['mae'])我得到的错误是:ValueError: Input 0 of layer conv1d_1 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: [None, 100]查看有关Conv1D的Keras文档,输入形状应该是3D张量的形状(批,阶,通道),如果我们使用一维数据,我将无法理解。您能否解释每一项的含义:批次,步骤和渠道?我应该如何调整我的一维向量以允许网络运行?
添加回答
举报
0/150
提交
取消