我仍在学习pyomo,到目前为止,我已经取得了一些进展:这个链接!给出了pyomo中的tsp示例。我复制了以下代码。而且一切正常。但是,我无法打印出最佳路线,有人可以帮忙或者给我一个关于如何打印和绘制最佳路线的思路吗?编码:from pyomo.environ import * from pyomo.opt import SolverFactoryimport pyomo.environn=13distanceMatrix=[[0,8,4,10,12,9,15,8,11,5,9,4,10],[8,0,27,6,8,6,17,10,12,9,8,7,5],[4,7,0,7,9,5,8,5,4,8,6 ,10,8],[10,6 ,7,0,6,11,5 ,9,8,12,11,6,9],[12,8 ,19,6, 0,7,9,6,9,8,4,11,10],[9,6,5,11,7,0,10,4,3,10,6,5,7],[15,7 ,8,15,19,10,0,10,9,8,5,9,10],[8,10 ,5,9,6,4,10,0,11,5,9,6,7],[11,12,4,8, 19,13,9,11,0, 9,11,11,6],[5,9,8,12,8,10,8,5,9,0,6,7,5], [9,8,6,11,14,6,5,9,11,6,0,10,7], [4,7,10,6,31,5,9,6,11,7,10,0,9], [10,5,8,9,10,7,10,7,6,5,7,9,0]] startCity = 0model = ConcreteModel()model.M = Set(initialize=range(1, n+1))model.N = Set(initialize=range(1, n+1))model.c = Param(model.N, model.N, initialize=lambda model, i, j: distanceMatrix[i-1][j-1])model.x = Var(model.N, model.N, within=Binary)def obj_rule(model): return sum(model.c[n,j]*model.x[n,j] for n in model.N for j in model.N)model.obj = Objective(rule=obj_rule,sense=minimize)def con_rule(model, n): return sum(model.x[j,n] for j in model.N if j < n) + sum(model.x[n,j] for j in model.N if j > n) == 2model.con = Constraint(model.N, rule=con_rule,doc='constraint1')opt = SolverFactory("glpk")results = opt.solve(model)results.write()print('Printing Values')print(value(model.obj))
1 回答

一只甜甜圈
TA贡献1836条经验 获得超5个赞
首先,您必须考虑解决方案采用的形式。如果我们看一下这个实现,我们就会看到矩阵x的维数为NxN,域二进制为0或1。考虑元素x [j] [k]等于1的含义。如果j <k或j> k,这意味着什么?
要提取x的值,一种简单的方法可能是
import numpy as np
N = len(model.N)
x = np.zeros((N,N))
for (i,j), val in model.x.get_values().items():
x[i-1,j-1] = val
然后,您可以根据需要使用x的值。
添加回答
举报
0/150
提交
取消