为了账号安全,请及时绑定邮箱和手机立即绑定

避免删除null来运行功能

避免删除null来运行功能

慕斯王 2021-04-28 13:44:49
我具有以下异常值检测功能:id = np.linspace(1,200,200)days = [350.0, 641.0, 389.0, 130.0, 344.0, 92.0, 392.0, 51.0, 28.0, 358.0,         309.0, 64.0, 380.0, 491.0, 332.0, 410.0, 66.0, 435.0, 156.0, 294.0,         75.0, 284.0, 105.0, 34.0, 50.0, 155.0, 427.0, 327.0, 116.0, 97.0,         274.0, 315.0, 99.0, 70.0, 62.0, 241.0, 397.0, 50.0, 41.0, 231.0,         238.0, 216.0, 105.0, 36.0, 192.0, 38.0, 122.0, 37.0, 236.0, 175.0,         138.0, 146.0, 125.0, 144.0, 166.0, 19.0, 155.0, 130.0, 54.0, 120.0,         65.0, 95.0, 158.0, 92.0, 65.0, 52.0, 91.0, 67.0, 38.0, 72.0, 36.0,         14.0, 74.0, 155.0, 503.0, 110.0, 338.0, 444.0, 408.0, 107.0, 214.0,         291.0, 91.0, 277.0, 96.0, 325.0, 154.0, 314.0, 377.0, 147.0, 48.0,         224.0, 75.0, 268.0, 135.0, 177.0, 133.0, 306.0, 187.0, 145.0, 353.0,         148.0, 182.0, 95.0, 82.0, None, 143.0, 79.0, 168.0, 141.0, 224.0, 82.0,        202.0, 107.0, 169.0, 153.0, 156.0, 79.0, 49.0, 126.0, 44.0, 67.0, 64.0,         102.0, 74.0, 56.0, 102.0, 285.0, 386.0, 176.0, 106.0, 6.0, 322.0, 72.0,         192.0, 429.0, 101.0, 159.0, 168.0, 319.0, 178.0, 323.0, 295.0, 151.0,         286.0, 93.0, 336.0, 252.0, 111.0, 49.0, 113.0, 214.0, 230.0, 77.0,        192.0, 219.0, 166.0, 72.0, 143.0, 166.0, 140.0, 191.0, 113.0, 83.0,         41.0, 28.0, 84.0, 78.0, 28.0, 202.0, 223.0, 188.0, 238.0, 212.0, 133.0, 77.0,        235.0, 212.0, 243.0, 176.0, 167.0, 69.0, 108.0, 11.0, 35.0, 63.0, 38.0, 445.0,        111.0, 135.0, 143.0, 70.0, 143.0, 77.0, 22.0, 222.0, 444.0, 321.0, 1.0, 234.0]df = pd.DataFrame(    {'ids': id,     'days': days    })def get_bounds(df, serie):     quartile_1, quartile_3 = np.percentile(df[serie], [25, 75])     iqr = quartile_3 - quartile_1     lower_bound = quartile_1 - (iqr * 1.5)     upper_bound = quartile_3 + (iqr * 1.5)     return lower_bound, upper_bound 但是,如果我将行更改为,则会引发错误#####!: lower_bound, upper_bound = get_bounds(df.dropna(subset=['days']),'days')然后运行就不会出现问题。但是,某些引用的函数df需要强制删除空值才能正确运行异常值定义。您能否协助更改它,以不强迫我删除空值以运行该函数?
查看完整描述

2 回答

?
Helenr

TA贡献1780条经验 获得超4个赞

使用numpy.nanpercentile。这会nan在获取百分位数时忽略值。因此,您的自定义函数中的代码应为:

quartile_1, quartile_3 = np.nanpercentile(df[serie], [25, 75])


查看完整回答
反对 回复 2021-05-18
?
慕工程0101907

TA贡献1887条经验 获得超5个赞

Pandas DataFrame具有自己的版本,numpy.percentile可以优雅地处理NaN值DataFrame.quantile。改用它。

quartile_1, quartile_3 = df[serie].quantile([0.25, 0.75])

从文档开始:

在请求的轴la上以给定的分位数返回值numpy.percentile


查看完整回答
反对 回复 2021-05-18
  • 2 回答
  • 0 关注
  • 149 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信