大家好,这是我的代码,我仍然是使用tensorflow的初学者,这是我的代码正在尝试运行文本分类DNN,直到现在一切正常。我想保存我的模型并导入它,以便可以用它来预测新值,但是我不知道该怎么做。让您对正在尝试做的事情有一个大致的了解。我有2个文件夹(培训和测试),每个文件夹都有(4个文件夹(分类类别))import tensorflow as tfimport tensorflow_hub as hubimport matplotlib.pyplot as pltimport numpy as npimport osimport pandas as pdimport reimport seaborn as snsimport loggingprint("Loading all files from directory ...")# Load all files from a directory in a DataFrame.def load_directory_data(directory): data = {} data["sentence"] = [] data["tnemitnes"] = [] print("getting in a loop") for file_path in os.listdir(directory): with tf.gfile.GFile(os.path.join(directory, file_path), "r") as f: print("directory : ",directory) print("file path : ",file_path) data["sentence"].append(f.read()) data["tnemitnes"].append(re.match("(\d+)\.txt", file_path).group(1)) return pd.DataFrame.from_dict(data)print("merging all files in the training set ...")# Merge all type of emails examples, add a polarity column and shuffle.def load_dataset(directory): pos_df = load_directory_data(os.path.join("train/br")) neg_df = load_directory_data(os.path.join(directory, "train/mi")) dos_df = load_directory_data(os.path.join(directory, "train/Brouillons")) #dsd nos_df = load_directory_data(os.path.join(directory, "train/favoris")) #dsd pos_df["polarity"] = 3 neg_df["polarity"] = 2 dos_df["polarity"] = 1 nos_df["polarity"] = 0 return pd.concat([pos_df, neg_df, dos_df , nos_df]).sample(frac=1).reset_index(drop=True)print("Getting the data from files ...")# Download and process the dataset files.def download_and_load_datasets(): train_df = load_dataset(os.path.dirname("train")) test_df = load_dataset(os.path.dirname("test")) return train_df, test_df现在,当我添加了估算器导出功能后,我开始要求提供serving_input_fn,说实话,我确实很难理解如何创建它。如果有更简单的方法,那就更好了。
3 回答

函数式编程
TA贡献1807条经验 获得超9个赞
我要做的就是将model_dir = os.getcwd()+'\ Model'添加到估算器中
model_dir= os.getcwd()+'\Model'
这是新代码,我创建了一个新的Folder并将其命名为model。
estimator = tf.estimator.DNNClassifier(
hidden_units=[10, 20],
feature_columns=[embedded_text_feature_column],
n_classes=4,
optimizer=tf.train.AdagradOptimizer(learning_rate=0.003),
model_dir= os.getcwd()+'\Model')
添加回答
举报
0/150
提交
取消