我有两个CSV文件,我正在比较并仅并排返回具有不同值的列。df1Country 1980 1981 1982 1983 1984Bermuda 0.00793 0.00687 0.00727 0.00971 0.00752Canada 9.6947 9.58952 9.20637 9.18989 9.78546Greenland 0.00791 0.00746 0.00722 0.00505 0.00799Mexico 3.72819 4.11969 4.33477 4.06414 4.18464df2Country 1980 1981 1982 1983 1984Bermuda 0.77777 0.00687 0.00727 0.00971 0.00752Canada 9.6947 9.58952 9.20637 9.18989 9.78546Greenland 0.00791 0.00746 0.00722 0.00505 0.00799Mexico 3.72819 4.11969 4.33477 4.06414 4.18464import pandas as pdimport numpy as npdf1=pd.read_csv('csv1.csv')df2=pd.read_csv('csv2.csv')def diff_pd(df1, df2): """Identify differences between two pandas DataFrames""" assert (df1.columns == df2.columns).all(), \ "DataFrame column names are different" if any(df1.dtypes != df2.dtypes): "Data Types are different, trying to convert" df2 = df2.astype(df1.dtypes) if df1.equals(df2): print("Dataframes are the same") return None else: # need to account for np.nan != np.nan returning True diff_mask = (df1 != df2) & ~(df1.isnull() & df2.isnull()) ne_stacked = diff_mask.stack() changed = ne_stacked[ne_stacked] changed.index.names = ['Country', 'Column'] difference_locations = np.where(diff_mask) changed_from = df1.values[difference_locations][0] changed_to = df2.values[difference_locations] y=pd.DataFrame({'From': changed_from, 'To': changed_to}, index=changed.index) print(y) return pd.DataFrame({'From': changed_from, 'To': changed_to}, index=changed.index)diff_pd(df1,df2)我当前的输出是: From ToCountry Column 0 1980 0.00793 0.77777因此,我想获得索引值不匹配的行的国家/地区名称,而不是索引0。下面是一个例子。我希望我的输出是: From ToCountry Column Bermuda 1980 0.00793 0.77777谢谢所有能提供解决方案的人。
1 回答
函数式编程
TA贡献1807条经验 获得超9个赞
一种更短的方法,在此过程中会重命名:
def process_df(df):
res = df.set_index('Country').stack()
res.index.rename('Column', level=1, inplace=True)
return res
df1 = process_df(df1)
df2 = process_df(df2)
mask = (df1 != df2) & ~(df1.isnull() & df2.isnull())
df3 = pd.concat([df1[mask], df2[mask]], axis=1).rename({0:'From', 1:'To'}, axis=1)
df3
From To
Country Column
Bermuda 1980 0.00793 0.77777
添加回答
举报
0/150
提交
取消