为了账号安全,请及时绑定邮箱和手机立即绑定

numpy数组,如何选择满足多个条件的索引?

numpy数组,如何选择满足多个条件的索引?

猛跑小猪 2019-11-26 14:24:56
假设我有一个numpy数组x = [5, 2, 3, 1, 4, 5],y = ['f', 'o', 'o', 'b', 'a', 'r']。我要选择与大于1小于5 的元素y相对应的元素x。我试过了x = array([5, 2, 3, 1, 4, 5])y = array(['f','o','o','b','a','r'])output = y[x > 1 & x < 5] # desired output is ['o','o','a']但这不起作用。我该怎么做?python numpy的
查看完整描述

3 回答

?
冉冉说

TA贡献1877条经验 获得超1个赞

如果添加括号,则表达式有效:


>>> y[(1 < x) & (x < 5)]

array(['o', 'o', 'a'], 

      dtype='|S1')


查看完整回答
反对 回复 2019-11-26
?
GCT1015

TA贡献1827条经验 获得超4个赞

IMO OP实际上并不需要np.bitwise_and()(aka &),但实际上是需要的,np.logical_and()因为它们正在比较逻辑值,例如True和False-请参阅此SO 逻辑与按位比较,以了解区别。


>>> x = array([5, 2, 3, 1, 4, 5])

>>> y = array(['f','o','o','b','a','r'])

>>> output = y[np.logical_and(x > 1, x < 5)] # desired output is ['o','o','a']

>>> output

array(['o', 'o', 'a'],

      dtype='|S1')

同样的方法是np.all()通过axis适当设置参数。


>>> output = y[np.all([x > 1, x < 5], axis=0)] # desired output is ['o','o','a']

>>> output

array(['o', 'o', 'a'],

      dtype='|S1')

通过数字:


>>> %timeit (a < b) & (b < c)

The slowest run took 32.97 times longer than the fastest. This could mean that an intermediate result is being cached.

100000 loops, best of 3: 1.15 µs per loop


>>> %timeit np.logical_and(a < b, b < c)

The slowest run took 32.59 times longer than the fastest. This could mean that an intermediate result is being cached.

1000000 loops, best of 3: 1.17 µs per loop


>>> %timeit np.all([a < b, b < c], 0)

The slowest run took 67.47 times longer than the fastest. This could mean that an intermediate result is being cached.

100000 loops, best of 3: 5.06 µs per loop

所以使用np.all()比较慢,但&和logical_and大致相同。


查看完整回答
反对 回复 2019-11-26
  • 3 回答
  • 0 关注
  • 2474 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信