3 回答
TA贡献1826条经验 获得超6个赞
Java Number Cruncher:《 Java数值计算程序员指南》提供了使用牛顿方法的解决方案。这本书的源代码在这里。以下内容摘自第12.5章大十进制函数(p330&p331):
/**
* Compute the natural logarithm of x to a given scale, x > 0.
*/
public static BigDecimal ln(BigDecimal x, int scale)
{
// Check that x > 0.
if (x.signum() <= 0) {
throw new IllegalArgumentException("x <= 0");
}
// The number of digits to the left of the decimal point.
int magnitude = x.toString().length() - x.scale() - 1;
if (magnitude < 3) {
return lnNewton(x, scale);
}
// Compute magnitude*ln(x^(1/magnitude)).
else {
// x^(1/magnitude)
BigDecimal root = intRoot(x, magnitude, scale);
// ln(x^(1/magnitude))
BigDecimal lnRoot = lnNewton(root, scale);
// magnitude*ln(x^(1/magnitude))
return BigDecimal.valueOf(magnitude).multiply(lnRoot)
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
}
/**
* Compute the natural logarithm of x to a given scale, x > 0.
* Use Newton's algorithm.
*/
private static BigDecimal lnNewton(BigDecimal x, int scale)
{
int sp1 = scale + 1;
BigDecimal n = x;
BigDecimal term;
// Convergence tolerance = 5*(10^-(scale+1))
BigDecimal tolerance = BigDecimal.valueOf(5)
.movePointLeft(sp1);
// Loop until the approximations converge
// (two successive approximations are within the tolerance).
do {
// e^x
BigDecimal eToX = exp(x, sp1);
// (e^x - n)/e^x
term = eToX.subtract(n)
.divide(eToX, sp1, BigDecimal.ROUND_DOWN);
// x - (e^x - n)/e^x
x = x.subtract(term);
Thread.yield();
} while (term.compareTo(tolerance) > 0);
return x.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
/**
* Compute the integral root of x to a given scale, x >= 0.
* Use Newton's algorithm.
* @param x the value of x
* @param index the integral root value
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal intRoot(BigDecimal x, long index,
int scale)
{
// Check that x >= 0.
if (x.signum() < 0) {
throw new IllegalArgumentException("x < 0");
}
int sp1 = scale + 1;
BigDecimal n = x;
BigDecimal i = BigDecimal.valueOf(index);
BigDecimal im1 = BigDecimal.valueOf(index-1);
BigDecimal tolerance = BigDecimal.valueOf(5)
.movePointLeft(sp1);
BigDecimal xPrev;
// The initial approximation is x/index.
x = x.divide(i, scale, BigDecimal.ROUND_HALF_EVEN);
// Loop until the approximations converge
// (two successive approximations are equal after rounding).
do {
// x^(index-1)
BigDecimal xToIm1 = intPower(x, index-1, sp1);
// x^index
BigDecimal xToI =
x.multiply(xToIm1)
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// n + (index-1)*(x^index)
BigDecimal numerator =
n.add(im1.multiply(xToI))
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// (index*(x^(index-1))
BigDecimal denominator =
i.multiply(xToIm1)
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// x = (n + (index-1)*(x^index)) / (index*(x^(index-1)))
xPrev = x;
x = numerator
.divide(denominator, sp1, BigDecimal.ROUND_DOWN);
Thread.yield();
} while (x.subtract(xPrev).abs().compareTo(tolerance) > 0);
return x;
}
/**
* Compute e^x to a given scale.
* Break x into its whole and fraction parts and
* compute (e^(1 + fraction/whole))^whole using Taylor's formula.
* @param x the value of x
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal exp(BigDecimal x, int scale)
{
// e^0 = 1
if (x.signum() == 0) {
return BigDecimal.valueOf(1);
}
// If x is negative, return 1/(e^-x).
else if (x.signum() == -1) {
return BigDecimal.valueOf(1)
.divide(exp(x.negate(), scale), scale,
BigDecimal.ROUND_HALF_EVEN);
}
// Compute the whole part of x.
BigDecimal xWhole = x.setScale(0, BigDecimal.ROUND_DOWN);
// If there isn't a whole part, compute and return e^x.
if (xWhole.signum() == 0) return expTaylor(x, scale);
// Compute the fraction part of x.
BigDecimal xFraction = x.subtract(xWhole);
// z = 1 + fraction/whole
BigDecimal z = BigDecimal.valueOf(1)
.add(xFraction.divide(
xWhole, scale,
BigDecimal.ROUND_HALF_EVEN));
// t = e^z
BigDecimal t = expTaylor(z, scale);
BigDecimal maxLong = BigDecimal.valueOf(Long.MAX_VALUE);
BigDecimal result = BigDecimal.valueOf(1);
// Compute and return t^whole using intPower().
// If whole > Long.MAX_VALUE, then first compute products
// of e^Long.MAX_VALUE.
while (xWhole.compareTo(maxLong) >= 0) {
result = result.multiply(
intPower(t, Long.MAX_VALUE, scale))
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
xWhole = xWhole.subtract(maxLong);
Thread.yield();
}
return result.multiply(intPower(t, xWhole.longValue(), scale))
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
TA贡献1830条经验 获得超3个赞
一种关系不好的小算法,适用于大量数字log(AB) = log(A) + log(B)
。以下是以10为基数的方法(您可以将其转换为任何其他对数基数):
计算答案中的小数位数。那是对数的必不可少的部分,再加上一个。例如:
floor(log10(123456)) + 1
是6,因为123456有6位数字。如果您需要的只是对数的整数部分,可以在这里停止:只需从步骤1的结果中减去1。
要获得对数的小数部分,请将数字除以
10^(number of digits)
,然后使用math.log10()
(或其他方法;计算对数的对数)(如果没有其他可用方法,则使用简单的序列近似),然后将其加到整数部分。示例:要获取的小数部分log10(123456)
,请计算math.log10(0.123456) = -0.908...
并将其添加到步骤1的结果中6 + -0.908 = 5.092
,即log10(123456)
。请注意,您基本上只是在大数前面加上小数点;在您的用例中可能有一种优化此方法的好方法,对于很大的数字,您甚至不必费心去抓住所有数字-log10(0.123)
近似于log10(0.123456789)
。
TA贡献1876条经验 获得超7个赞
这是超级快的,因为:
没有 toString()
无BigInteger数学(牛顿/续分数)
甚至没有实例化一个新的 BigInteger
仅使用固定数量的非常快速的操作
一次通话大约需要20微秒(每秒大约5万次通话)
但:
仅适用于 BigInteger
解决方法BigDecimal(未测试速度):
移动小数点,直到值> 2 ^ 53
使用toBigInteger()(div内部使用)
该算法利用了可以将对数计算为指数和尾数对数之和的事实。例如:
12345有5位数字,因此以10为底的对数介于4和5之间。log(12345)= 4 + log(1.2345)= 4.09149 ...(以10为底的对数)
该函数计算以2为底的对数,因为找到占用的位数很简单。
public double log(BigInteger val)
{
// Get the minimum number of bits necessary to hold this value.
int n = val.bitLength();
// Calculate the double-precision fraction of this number; as if the
// binary point was left of the most significant '1' bit.
// (Get the most significant 53 bits and divide by 2^53)
long mask = 1L << 52; // mantissa is 53 bits (including hidden bit)
long mantissa = 0;
int j = 0;
for (int i = 1; i < 54; i++)
{
j = n - i;
if (j < 0) break;
if (val.testBit(j)) mantissa |= mask;
mask >>>= 1;
}
// Round up if next bit is 1.
if (j > 0 && val.testBit(j - 1)) mantissa++;
double f = mantissa / (double)(1L << 52);
// Add the logarithm to the number of bits, and subtract 1 because the
// number of bits is always higher than necessary for a number
// (ie. log2(val)<n for every val).
return (n - 1 + Math.log(f) * 1.44269504088896340735992468100189213742664595415298D);
// Magic number converts from base e to base 2 before adding. For other
// bases, correct the result, NOT this number!
}
添加回答
举报