3 回答
TA贡献1871条经验 获得超13个赞
正如最初编写的那样,Thrust纯粹是主机端抽象。它不能在内核内部使用。您可以thrust::device_vector像这样将封装在a中的设备内存传递给自己的内核:
thrust::device_vector< Foo > fooVector;
// Do something thrust-y with fooVector
Foo* fooArray = thrust::raw_pointer_cast( &fooVector[0] );
// Pass raw array and its size to kernel
someKernelCall<<< x, y >>>( fooArray, fooVector.size() );
并且您还可以通过使用裸cuda设备内存指针实例化推力::: device_ptr来使用推力算法中推力未分配的设备内存。
经过四年半的编辑,根据@JackOLantern的答案进行补充,推力1.8添加了顺序执行策略,这意味着您可以在设备上运行推力算法的单线程版本。注意,仍然不可能直接将推力设备向量传递给内核,并且设备向量不能直接在设备代码中使用。
请注意,thrust::device在某些情况下,也可以使用执行策略,以由内核作为子网格启动并行推力执行。这需要单独的编译/设备链接和支持动态并行性的硬件。我不确定是否所有推力算法实际上都支持此功能,但是肯定可以使用某些推力算法。
TA贡献1827条经验 获得超9个赞
这是我先前回答的更新。
从Thrust 1.8.1开始,CUDA Thrust原语可以与thrust::device执行策略结合起来,以利用CUDA 动态并行性在单个CUDA线程中并行运行。下面,举一个例子。
#include <stdio.h>
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>
#include "TimingGPU.cuh"
#include "Utilities.cuh"
#define BLOCKSIZE_1D 256
#define BLOCKSIZE_2D_X 32
#define BLOCKSIZE_2D_Y 32
/*************************/
/* TEST KERNEL FUNCTIONS */
/*************************/
__global__ void test1(const float * __restrict__ d_data, float * __restrict__ d_results, const int Nrows, const int Ncols) {
const unsigned int tid = threadIdx.x + blockDim.x * blockIdx.x;
if (tid < Nrows) d_results[tid] = thrust::reduce(thrust::seq, d_data + tid * Ncols, d_data + (tid + 1) * Ncols);
}
__global__ void test2(const float * __restrict__ d_data, float * __restrict__ d_results, const int Nrows, const int Ncols) {
const unsigned int tid = threadIdx.x + blockDim.x * blockIdx.x;
if (tid < Nrows) d_results[tid] = thrust::reduce(thrust::device, d_data + tid * Ncols, d_data + (tid + 1) * Ncols);
}
/********/
/* MAIN */
/********/
int main() {
const int Nrows = 64;
const int Ncols = 2048;
gpuErrchk(cudaFree(0));
// size_t DevQueue;
// gpuErrchk(cudaDeviceGetLimit(&DevQueue, cudaLimitDevRuntimePendingLaunchCount));
// DevQueue *= 128;
// gpuErrchk(cudaDeviceSetLimit(cudaLimitDevRuntimePendingLaunchCount, DevQueue));
float *h_data = (float *)malloc(Nrows * Ncols * sizeof(float));
float *h_results = (float *)malloc(Nrows * sizeof(float));
float *h_results1 = (float *)malloc(Nrows * sizeof(float));
float *h_results2 = (float *)malloc(Nrows * sizeof(float));
float sum = 0.f;
for (int i=0; i<Nrows; i++) {
h_results[i] = 0.f;
for (int j=0; j<Ncols; j++) {
h_data[i*Ncols+j] = i;
h_results[i] = h_results[i] + h_data[i*Ncols+j];
}
}
TimingGPU timerGPU;
float *d_data; gpuErrchk(cudaMalloc((void**)&d_data, Nrows * Ncols * sizeof(float)));
float *d_results1; gpuErrchk(cudaMalloc((void**)&d_results1, Nrows * sizeof(float)));
float *d_results2; gpuErrchk(cudaMalloc((void**)&d_results2, Nrows * sizeof(float)));
gpuErrchk(cudaMemcpy(d_data, h_data, Nrows * Ncols * sizeof(float), cudaMemcpyHostToDevice));
timerGPU.StartCounter();
test1<<<iDivUp(Nrows, BLOCKSIZE_1D), BLOCKSIZE_1D>>>(d_data, d_results1, Nrows, Ncols);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
printf("Timing approach nr. 1 = %f\n", timerGPU.GetCounter());
gpuErrchk(cudaMemcpy(h_results1, d_results1, Nrows * sizeof(float), cudaMemcpyDeviceToHost));
for (int i=0; i<Nrows; i++) {
if (h_results1[i] != h_results[i]) {
printf("Approach nr. 1; Error at i = %i; h_results1 = %f; h_results = %f", i, h_results1[i], h_results[i]);
return 0;
}
}
timerGPU.StartCounter();
test2<<<iDivUp(Nrows, BLOCKSIZE_1D), BLOCKSIZE_1D>>>(d_data, d_results1, Nrows, Ncols);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
printf("Timing approach nr. 2 = %f\n", timerGPU.GetCounter());
gpuErrchk(cudaMemcpy(h_results1, d_results1, Nrows * sizeof(float), cudaMemcpyDeviceToHost));
for (int i=0; i<Nrows; i++) {
if (h_results1[i] != h_results[i]) {
printf("Approach nr. 2; Error at i = %i; h_results1 = %f; h_results = %f", i, h_results1[i], h_results[i]);
return 0;
}
}
printf("Test passed!\n");
}
上面的示例对矩阵的行进行缩减的方式与使用CUDA减少矩阵行的意义相同,但此操作与以上文章不同,即直接从用户编写的内核中调用CUDA Thrust原语。此外,以上示例还用于比较在执行两个执行策略(即thrust::seq和)时相同操作的性能thrust::device。下面,一些图表显示了性能差异。
性能已在开普勒K20c和Maxwell GeForce GTX 850M上进行了评估。
TA贡献1860条经验 获得超9个赞
我想对此问题提供更新的答案。
从Thrust 1.8开始,CUDA Thrust原语可以与thrust::seq执行策略结合使用,以在单个CUDA线程中顺序运行(或在单个CPU线程中顺序运行)。下面,举一个例子。
如果要在线程内并行执行,则可以考虑使用CUB,它提供了可从线程块内调用的简化例程,只要您的卡启用了动态并行性。
这是推力的例子
#include <stdio.h>
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
__global__ void test(float *d_A, int N) {
float sum = thrust::reduce(thrust::seq, d_A, d_A + N);
printf("Device side result = %f\n", sum);
}
int main() {
const int N = 16;
float *h_A = (float*)malloc(N * sizeof(float));
float sum = 0.f;
for (int i=0; i<N; i++) {
h_A[i] = i;
sum = sum + h_A[i];
}
printf("Host side result = %f\n", sum);
float *d_A; gpuErrchk(cudaMalloc((void**)&d_A, N * sizeof(float)));
gpuErrchk(cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice));
test<<<1,1>>>(d_A, N);
}
添加回答
举报