3 回答

TA贡献1824条经验 获得超5个赞
这是使用numpy.repeat和的一种方法itertools.chain。从概念上讲,这正是您想要做的:重复某些值,链接其他值。建议用于少量的列,否则stack基于方法的方法可能会更好。
import numpy as np
from itertools import chain
# return list from series of comma-separated strings
def chainer(s):
return list(chain.from_iterable(s.str.split(',')))
# calculate lengths of splits
lens = df['package'].str.split(',').map(len)
# create new dataframe, repeating or chaining as appropriate
res = pd.DataFrame({'order_id': np.repeat(df['order_id'], lens),
'order_date': np.repeat(df['order_date'], lens),
'package': chainer(df['package']),
'package_code': chainer(df['package_code'])})
print(res)
order_id order_date package package_code
0 1 20/5/2018 p1 #111
0 1 20/5/2018 p2 #222
0 1 20/5/2018 p3 #333
1 3 22/5/2018 p4 #444
2 7 23/5/2018 p5 #555
2 7 23/5/2018 p6 #666

TA贡献1851条经验 获得超5个赞
这适用于任何数量的列,例如这样。本质是带有的一点堆叠-堆叠功能str.split。
(df.set_index(['order_date', 'order_id'])
.stack()
.str.split(',', expand=True)
.stack()
.unstack(-2)
.reset_index(-1, drop=True)
.reset_index()
)
order_date order_id package package_code
0 20/5/2018 1 p1 #111
1 20/5/2018 1 p2 #222
2 20/5/2018 1 p3 #333
3 22/5/2018 3 p4 #444
4 23/5/2018 7 p5 #555
5 23/5/2018 7 p6 #666
还有另一个涉及的性能替代方案chain,但是您需要显式地链接并重复每列(很多列都有问题)。由于没有单一答案,因此请选择最适合您问题描述的内容。
细节
首先,将不被触及的列设置为索引。
df.set_index(['order_date', 'order_id'])
package package_code
order_date order_id
20/5/2018 1 p1,p2,p3 #111,#222,#333
22/5/2018 3 p4 #444
23/5/2018 7 p5,p6 #555,#666
接下来,stack行。
_.stack()
order_date order_id
20/5/2018 1 package p1,p2,p3
package_code #111,#222,#333
22/5/2018 3 package p4
package_code #444
23/5/2018 7 package p5,p6
package_code #555,#666
dtype: object
我们现在有一系列。因此请str.split使用逗号。
_.str.split(',', expand=True)
0 1 2
order_date order_id
20/5/2018 1 package p1 p2 p3
package_code #111 #222 #333
22/5/2018 3 package p4 None None
package_code #444 None None
23/5/2018 7 package p5 p6 None
package_code #555 #666 None
我们需要摆脱NULL值,因此stack再次调用。
_.stack()
order_date order_id
20/5/2018 1 package 0 p1
1 p2
2 p3
package_code 0 #111
1 #222
2 #333
22/5/2018 3 package 0 p4
package_code 0 #444
23/5/2018 7 package 0 p5
1 p6
package_code 0 #555
1 #666
dtype: object
我们快到了。现在我们希望索引的倒数第二层成为我们的列,因此使用unstack(-2)(unstack在倒数第二层)上的堆栈
_.unstack(-2)
package package_code
order_date order_id
20/5/2018 1 0 p1 #111
1 p2 #222
2 p3 #333
22/5/2018 3 0 p4 #444
23/5/2018 7 0 p5 #555
1 p6 #666
使用reset_index以下命令摆脱多余的最后一级:
_.reset_index(-1, drop=True)
package package_code
order_date order_id
20/5/2018 1 p1 #111
1 p2 #222
1 p3 #333
22/5/2018 3 p4 #444
23/5/2018 7 p5 #555
7 p6 #666
最后,
_.reset_index()
order_date order_id package package_code
0 20/5/2018 1 p1 #111
1 20/5/2018 1 p2 #222
2 20/5/2018 1 p3 #333
3 22/5/2018 3 p4 #444
4 23/5/2018 7 p5 #555
5 23/5/2018 7 p6 #666
添加回答
举报