2 回答
TA贡献1836条经验 获得超13个赞
在“ reshape2”中,您可以使用recast(尽管根据我的经验,这不是众所周知的功能)。
library(reshape2)
recast(mydf, id ~ variable + type, id.var = c("id", "type"))
# id transactions_expense transactions_income amount_expense amount_income
# 1 20 25 20 95 100
# 2 30 45 50 250 300
您还可以使用基数R reshape:
reshape(mydf, direction = "wide", idvar = "id", timevar = "type")
# id transactions.income amount.income transactions.expense amount.expense
# 1 20 20 100 25 95
# 3 30 50 300 45 250
或者,你可以melt和dcast,像这样的(这里“data.table”):
library(data.table)
library(reshape2)
dcast.data.table(melt(as.data.table(mydf), id.vars = c("id", "type")),
id ~ variable + type, value.var = "value")
# id transactions_expense transactions_income amount_expense amount_income
# 1: 20 25 20 95 100
# 2: 30 45 50 250 300
在dcast.data.table“ data.table”(1.9.8)的更高版本中,您将可以直接执行此操作。如果我正确理解的话,@ Arun尝试实现的内容将是在无需首先melt获取数据的情况下进行重塑,这就是当前发生的情况recast,本质上是melt+ dcast操作序列的包装。
而且,为彻底起见,这里是tidyr方法:
library(dplyr)
library(tidyr)
mydf %>%
gather(var, val, transactions:amount) %>%
unite(var2, type, var) %>%
spread(var2, val)
# id expense_amount expense_transactions income_amount income_transactions
# 1 20 95 25 100 20
# 2 30 250 45 300 50
TA贡献1830条经验 获得超9个赞
使用data.table v1.9.6 +,我们可以value.var同时转换多个列(并在中使用多个聚合函数fun.aggregate)。请查看?dcast更多信息以及示例部分。
require(data.table) # v1.9.6+
dcast(dt, id ~ type, value.var=names(dt)[3:4])
# id transactions_expense transactions_income amount_expense amount_income
# 1: 20 25 20 95 100
# 2: 30 45 50 250 300
添加回答
举报