3 回答

TA贡献1841条经验 获得超3个赞
def doAppend( size=10000 ):
result = []
for i in range(size):
message= "some unique object %d" % ( i, )
result.append(message)
return result
def doAllocate( size=10000 ):
result=size*[None]
for i in range(size):
message= "some unique object %d" % ( i, )
result[i]= message
return result
结果。(评估每个功能144次并平均持续时间)
simple append 0.0102
pre-allocate 0.0098
结论。这几乎不重要。
过早优化是万恶之源。

TA贡献2016条经验 获得超9个赞
简短版:使用
pre_allocated_list = [None] * size
预先分配一个列表(即,能够解决列表的'size'元素,而不是通过附加逐渐形成列表)。即使在大型列表中,此操作也非常快。分配稍后将分配给列表元素的新对象将花费更长时间,并且将成为程序中的瓶颈,性能方面。
长版:
我认为应该考虑初始化时间。因为在python中,一切都是引用,无论你是将每个元素设置为None还是一些字符串都无关紧要 - 无论哪种方式,它都只是一个引用。如果要为每个要引用的元素创建新对象,则需要更长的时间。
对于Python 3.2:
import time
import copy
def print_timing (func):
def wrapper (*arg):
t1 = time.time ()
res = func (*arg)
t2 = time.time ()
print ("{} took {} ms".format (func.__name__, (t2 - t1) * 1000.0))
return res
return wrapper
@print_timing
def prealloc_array (size, init = None, cp = True, cpmethod=copy.deepcopy, cpargs=(), use_num = False):
result = [None] * size
if init is not None:
if cp:
for i in range (size):
result[i] = init
else:
if use_num:
for i in range (size):
result[i] = cpmethod (i)
else:
for i in range (size):
result[i] = cpmethod (cpargs)
return result
@print_timing
def prealloc_array_by_appending (size):
result = []
for i in range (size):
result.append (None)
return result
@print_timing
def prealloc_array_by_extending (size):
result = []
none_list = [None]
for i in range (size):
result.extend (none_list)
return result
def main ():
n = 1000000
x = prealloc_array_by_appending(n)
y = prealloc_array_by_extending(n)
a = prealloc_array(n, None)
b = prealloc_array(n, "content", True)
c = prealloc_array(n, "content", False, "some object {}".format, ("blah"), False)
d = prealloc_array(n, "content", False, "some object {}".format, None, True)
e = prealloc_array(n, "content", False, copy.deepcopy, "a", False)
f = prealloc_array(n, "content", False, copy.deepcopy, (), False)
g = prealloc_array(n, "content", False, copy.deepcopy, [], False)
print ("x[5] = {}".format (x[5]))
print ("y[5] = {}".format (y[5]))
print ("a[5] = {}".format (a[5]))
print ("b[5] = {}".format (b[5]))
print ("c[5] = {}".format (c[5]))
print ("d[5] = {}".format (d[5]))
print ("e[5] = {}".format (e[5]))
print ("f[5] = {}".format (f[5]))
print ("g[5] = {}".format (g[5]))
if __name__ == '__main__':
main()
评价:
prealloc_array_by_appending took 118.00003051757812 ms
prealloc_array_by_extending took 102.99992561340332 ms
prealloc_array took 3.000020980834961 ms
prealloc_array took 49.00002479553223 ms
prealloc_array took 316.9999122619629 ms
prealloc_array took 473.00004959106445 ms
prealloc_array took 1677.9999732971191 ms
prealloc_array took 2729.999780654907 ms
prealloc_array took 3001.999855041504 ms
x[5] = None
y[5] = None
a[5] = None
b[5] = content
c[5] = some object blah
d[5] = some object 5
e[5] = a
f[5] = []
g[5] = ()
正如您所看到的,只需创建一个对同一None对象的引用的大列表,只需要很少的时间。
前置或延长需要更长的时间(我没有做任何平均值,但是在运行几次后我可以告诉你,延伸和追加大致需要相同的时间)。
为每个元素分配新对象 - 这是花费最多时间的。而S.Lott的答案就是这样 - 每次都会格式化一个新的字符串。这不是严格要求的 - 如果您想预先分配一些空间,只需创建一个None列表,然后随意将数据分配给列表元素。无论哪种方式,生成数据都需要花费更多时间而不是追加/扩展列表,无论是在创建列表时生成还是在生成列表之后生成数据。但是如果你想要一个人口稀少的列表,那么从None列表开始肯定会更快。
添加回答
举报