为了账号安全,请及时绑定邮箱和手机立即绑定

请问该如何运行自带wordcount-Hadoop2?

请问该如何运行自带wordcount-Hadoop2?

如何运行自带wordcount-Hadoop2
查看完整描述

3 回答

?
潇潇雨雨

TA贡献1833条经验 获得超4个赞

但是通过这种方式设置map的个数,并不是每次都有效的。原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素。
为了方便介绍,先来看几个名词:
block_size : hdfs的文件块大小,默认为64M,可以通过参数dfs.block.size设置
total_size : 输入文件整体的大小
input_file_num : 输入文件的个数
(1)默认map个数
如果不进行任何设置,默认的map个数是和blcok_size相关的。
default_num = total_size / block_size;
(2)期望大小
可以通过参数
mapred.map.tasks来设置程序员期望的map个数,但是这个个数只有在大于default_num的时候,才会生效。
goal_num =mapred.map.tasks;
(3)设置处理的文件大小
可以通过mapred.min.split.size 设置每个task处理的文件大小,但是这个大小只有在大于
block_size的时候才会生效。
split_size = max(
mapred.min.split.size,
block_size);split_num = total_size / split_size;
(4)计算的map个数
compute_map_num = min(split_num, max(default_num, goal_num))
除了这些配置以外,mapreduce还要遵循一些原则。 mapreduce的每一个map处理的数据是不能跨越文件的,也就是说max_map_num <= input_file_num。 所以,最终的map个数应该为:
final_map_num = min(compute_map_num, input_file_num)
经过以上的分析,在设置map个数的时候,可以简单的总结为以下几点:
(1)如果想增加map个数,则设置mapred.map.tasks 为一个较大的值。
(2)如果想减小map个数,则设置mapred.min.split.size 为一个较大的值。



查看完整回答
反对 回复 2019-09-14
  • 3 回答
  • 0 关注
  • 1286 浏览

添加回答

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信