点与线段之间的最短距离我需要一个基本的函数来找到点和线段之间的最短距离。可以随意用您想要的任何语言编写解决方案;我可以将其翻译成我正在使用的语言(Javascript)。编辑:我的线段由两个端点定义。所以我的线段AB是由两点定义的。A (x1,y1)和B (x2,y2)..我想找出这段线段和一个点之间的距离C (x3,y3)..我的几何技能是生疏的,所以我看到的例子是混乱的,我很抱歉承认。
3 回答
呼啦一阵风
TA贡献1802条经验 获得超6个赞
class vec2 {float x,y;}
x1 x2 + y1 y2
).
float minimum_distance(vec2 v, vec2 w, vec2 p) { // Return minimum distance between line segment vw and point p const float l2 = length_squared(v, w); // i.e. |w-v|^2 - avoid a sqrt if (l2 == 0.0) return distance(p, v); // v == w case // Consider the line extending the segment, parameterized as v + t (w - v). // We find projection of point p onto the line. // It falls where t = [(p-v) . (w-v)] / |w-v|^2 // We clamp t from [0,1] to handle points outside the segment vw. const float t = max(0, min(1, dot(p - v, w - v) / l2)); const vec2 projection = v + t * (w - v); // Projection falls on the segment return distance(p, projection);}
x
y
function sqr(x) { return x * x }function dist2(v, w) { return sqr(v.x - w.x) + sqr(v.y - w.y) }function distToSegmentSquared(p, v, w) { var l2 = dist2(v, w); if (l2 == 0) return dist2(p, v); var t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2; t = Math.max(0, Math.min(1, t)); return dist2(p, { x: v.x + t * (w.x - v.x), y: v.y + t * (w.y - v.y) });}function distToSegment(p, v, w) { return Math.sqrt(distToSegmentSquared(p, v, w)) ; }
float dist_to_segment_squared(float px, float py, float pz, float lx1, float ly1, float lz1, float lx2, float ly2, float lz2) { float line_dist = dist_sq(lx1, ly1, lz1, lx2, ly2, lz2); if (line_dist == 0) return dist_sq(px, py, pz, lx1, ly1, lz1); float t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1) + (pz - lz1) * (lz2 - lz1)) / line_dist; t = constrain(t, 0, 1); return dist_sq(px, py, pz, lx1 + t * (lx2 - lx1), ly1 + t * (ly2 - ly1), lz1 + t * (lz2 - lz1));}
添加回答
举报
0/150
提交
取消