2 回答
TA贡献1757条经验 获得超8个赞
Hadoop主要是分布式计算和存储的框架,所以Hadoop工作过程主要依赖于HDFS(Hadoop Distributed File System)分布式存储系统和Mapreduce分布式计算框架。
分布式存储系统HDFS中工作主要是一个主节点namenode(master)(hadoop1.x只要一个namenode节点,2.x中可以有多个节点)和若干个从节点Datanode(数据节点)相互配合进行工作,HDFS主要是存储Hadoop中的大量的数据,namenode节点主要负责的是:
1、接收client用户的操作请求,这种用户主要指的是开发工程师的Java代码或者是命令客户端操作。
2、维护文件系统的目录结构,主要就是大量数据的关系以及位置信息等。
3、管理文件系统与block的关系,Hadoop中大量的数据为了方便存储和管理主要是以block块(64M)的形式储存。一个文件被分成大量的block块存储之后,block块之间都是有顺序关系的,这个文件与block之间的关系以及block属于哪个datanode都是有namenode来管理。
Datanode的主要职责是:
1、存储文件。
2、将数据分成大量的block块。
3、为保证数据的安全,对数据进行备份,一般备份3份。当其中的一份出现问题时,将由其他的备份来对数据进行恢复。
MapReduce主要也是一个主节点JOPtracker和testtracker组成,主要是负责hadoop中的数据处理过程中的计算问题。
joptracker主要负责接收客户端传来的任务,并且把计算任务交给很多testtracker工作,同时joptracker会不断的监控testtracker的执行情况。
testtracker主要是执行joptracker交给它的任务具体计算,例如给求大量数据的最大值,每个testtracker会计算出自己负责的数据中的最大值,然后交给joptracker。
Hadoop的主要两个框架组合成了分布式的存储和计算,使得hadoop可以很快的处理大量的数据。
- 2 回答
- 0 关注
- 1262 浏览
添加回答
举报