1 回答

TA贡献1934条经验 获得超2个赞
作者:梅洪源
来源:知乎
现在实践证明,对supervised-learning而言,效果较好的应该算是Recurrent Neural Network (RNN)吧,目前比较火的一类RNN是LSTM -- Long Short Term Memory。
对于这个model而言,最初的发明见于论文--Long Short Term Memory by Hochreiter and Schmidhuber,而之后较好的归纳和实现可以参考Frame Phoneme Classification with Bidirectional LSTM by Alex Graves,后者有比较清晰的back propagation的公式。
最近两年这个model在speech,language以及multimodal with vision等方面可谓是大展宏图,一再的刷新实验结果,重要工作可以参考:
Speech recognition with Deep Recurrent Neural Networks by Graves
Sequence to Sequence Learning with Neural Networks by Sutskever
Show Attend and Tell by Kelvin Xu
至于具体的实现,希望避免造轮子的可以参考这个非常famous的github:karpathy (Andrej) · GitHub,Andrej Karpathy最近发了很多很有趣的RNN的fun project,可以borrow一些代码。
希望自己造轮子的,可以选择用Theano或者Torch,用画data flow的方法来code整个structure,很简洁实用,我个人一直用Theano,给个好评。:)
当然啦,至于你要研究什么问题,还是具体问题具体分析的好。可以去搜搜有没有研究类似问题的paper,看看目前的最好的技术是什么。Deep Learning不一定是万能的啦。
- 1 回答
- 0 关注
- 582 浏览
添加回答
举报