import tensorflow as tfimport input_data# number 1 to 10 datamnist = input_data.read_data_sets('MNIST_data/', one_hot=True)def add_layer(inputs, in_size, out_size, activation_function=None, ): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, ) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b, ) return outputsdef compute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, feed_dict={xs: v_xs}) correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys}) return result# define placeholder for inputs to networkxs = tf.placeholder(tf.float32, [None, 784]) # 28x28ys = tf.placeholder(tf.float32, [None, 10])# add output layerprediction = add_layer(xs, 784, 10, activation_function=tf.nn.softmax)# the error between prediction and real datacross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) # losstrain_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)sess = tf.Session()init = tf.global_variables_initializer()sess.run(init)for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys}) if i % 50 == 0: print(compute_accuracy( mnist.test.images, mnist.test.labels))
添加回答
举报
0/150
提交
取消